
To be functional, most proteins must adopt a defined 
three-dimensional structure termed the native fold. 
Protein folding starts as proteins are synthesized at 
ribosomes and passes through structural intermediates 
before the native state is reached (FIG. 1). Some inter-
mediates can be non-productive, such as misfolded 
conformers that are trapped in free energy minima. As 
the energy barriers that separate native and non-native 
conformations are usually small, even native proteins 
are at permanent risk of unfolding, especially under 
environmental stress conditions1–3. Folding intermedi-
ates, including misfolded conformers, typically expose 
hydrophobic residues that are normally buried in the 
native structure. Such hydrophobic surfaces are prone to 
triggering the aggregation of proteins. There seems to be 
a preference for the co-aggregation of the same type of 
protein4,5. However, one aggregating protein species can 
also influence the aggregation behaviour of another one6, 
and different proteins can be found to co-aggregate, as 
was observed for aggregation-prone proteins containing 
polyglutamine stretches. This trapping of other proteins 
in aggregates was suggested to be one possible reason for 
the toxicity associated with neurodegenerative diseases 
that involves polyglutamine aggregation7–9.

Preventing the accumulation of aggregation-prone 
misfolded proteins is the first and most effective inter-
vention point to control protein aggregation. Cells of all 
kingdoms of life have evolved an elaborate protein quality- 
control system, which acts either to facilitate the folding  
or refolding of misfolded protein species by molecula r 
chaperones or to remove them by proteolytic degra-
dation, thereby preventing protein aggregation10–14.  

The main chaperone classes that prevent the accumu-
lation of misfolded conformers include the heat shock 
proteins (HSPs) HSP60 and HSP70, which exhibit ATP-
dependent refolding activities11,15–17. Misfolded proteins 
that are not refolded are generally turned over by either 
cytosolic ATP-dependent AAA+ proteases (for example, 
the 26S proteasome)10 or acidic hydrolases after their 
transport into the lysosomal compartment14,18–20. A proper 
balance between these protein quality-control compo-
nents is required for protein homeostasis, also referred 
to as proteostasis21. Protein aggregation seems to result 
from exhaustion of the above quality-control system.

In this Review, we summarize the basic principles of 
the cellular mechanisms that control protein aggregation 
and cope with aggregates. We focus on the organization 
of aggregates in specialized intracellular deposition sites, 
mechanisms to reverse protein aggregation and strate-
gies to eliminate aggregates or retain them in the cells 
with lower life expectancies during cell division. We do 
not cover the details of the many folding diseases that 
are related to protein aggregation and mention various 
disease-related proteins or types of aggregates only in the 
context of the general principles of protein aggregation.

Conditions that result in aggregation
The quality-control system can adapt to the sever-
ity of protein damage through the induction of stress 
responses, which adjust the cellular levels of chaperones 
and proteases10,13,22–24. However, when the generation of 
misfolded proteins exceeds the refolding or degradative 
capacity of a cell, protein aggregates accumulate. This 
exhaustion of the cellular protein quality-control system 
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Conformer
One of many possible 
structural states from the  
same protein species.

Molecular chaperone
One of a group of unrelated 
proteins that interact with 
non-native polypeptides to 
assist in their folding, transport 
and assembly.

Heat shock protein
A protein that shows increased 
expression in stress conditions 
through a specialized 
heat shock-response element 
in the promoter of the 
corresponding gene.

Cellular strategies for controlling 
protein aggregation
Jens Tyedmers, Axel Mogk and Bernd Bukau

Abstract | The aggregation of misfolded proteins is associated with the perturbation of 
cellular function, ageing and various human disorders. Mounting evidence suggests that 
protein aggregation is often part of the cellular response to an imbalanced protein 
homeostasis rather than an unspecific and uncontrolled dead-end pathway. It is a regulated 
process in cells from bacteria to humans, leading to the deposition of aggregates at specific 
sites. The sequestration of misfolded proteins in such a way is protective for cell function as it 
allows for their efficient solubilization and refolding or degradation by components of the 
protein quality-control network. The organized aggregation of misfolded proteins might also 
allow their asymmetric distribution to daughter cells during cell division.
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can result not only from single, severe conditions, but 
also from the combination of different moderate condi-
tions, which do not overwhelm the system on their own4. 
various internal and external conditions have been iden-
tified and can be categorized into the four main classes 
described below.

The first class comprises mutations that result in the 
sustained tendency of the affected proteins to misfold 
and aggregate. Such mutations are responsible for various  
‘conformational diseases’, such as type II dia betes, 
Huntington’s disease and familial forms (which are 
in herited and have a higher probability of developing in 
the affected family) of Parkinson’s disease and Alzheimer’s 
disease21,25,26. Moreover, mutations in components of the 
protein quality-control system can provoke protein aggre-
gation. examples are mutations in the genes en coding the 
small HSP (sHSP) α-crystallin, leading to cataract forma-
tion27, and the E3 ubiquitin ligase Parkin, resulting in an 
early onset form of Parkinson’s disease28–30.

The second class comprises defects in protein bio-
genesis. These include translational errors, leading to the 
misincorporation of amino acids, and assembly defects 
of protein complexes, leading to the accumulation of 

non-complexed protein species that are frequently 
prone to aggregation31,32.

The third class comprises environmental stress con-
ditions, such as heat and oxidative stress. excessive heat 
treatment at or above the upper temperature range for 
growth of a particular cell type leads to the bulk unfold-
ing of cellular proteins. Whereas heat-induced unfolding 
of proteins may be reversible (see below)33, oxidative 
stress can lead to several irreversible protein modifica-
tions by reactive oxygen species (RoS), including radical- 
induced fragmentation of the polypeptide backbone and 
the replacement of side chains of specific amino acid 
residues by carbonyl groups34. Carbonyl derivates can 
be generated either by a direct oxidative modification 
of Pro, Arg, lys and Thr residues or in reactions of lys, 
Cys and His residues with reactive carbonyl compounds 
on glycoxidation products, lipids and advanced glyca-
tion end products35. These irreversible modifications can 
then lead to misfolding and eventually aggregation. one 
possible reason for the accumulation of carbonylated 
proteins as aggregates may be that the carbonyl groups 
can further react with the α-amino group of lys residues, 
thereby leading to cross-linked derivates that are resistant  
to proteolytic degradation by the proteasome34.

The fourth class comprises protein aggregation in 
cells during ageing, which occurs at a slower pace. For 
example, the aggregation of polyglutamine model pro-
teins in Caenorhabditis elegans and a misfolding-prone 
mutant of human superoxide dismutase 1 (SoD1) in 
mice is exacerbated during ageing36,37. As SoD1 mutants, 
in contrast to the wild-type protein, expose more hydro-
phobic surfaces and can be bound by chaperones, this 
example demonstrates how the quality-control system 
can become progressively exhausted during ageing37,38. 
Similarly, carbonylated proteins accumulate progress-
ively to form visible aggregation foci in the cytoplasm 
in aged yeast cells39. These findings suggest a reduced 
capacity of ageing cells to eliminate misfolded protein 
species. Such a general decline in the capacity of cellular 
protein quality control during ageing was also suggested 
to be a reason for the late age of onset of Huntington’s dis-
ease and many sporadic forms of Alzheimer’s disease or 
Parkinson’s disease. However, additional factors, includ-
ing the unique combination of polymorphic variations 
in different proteins of an individual, may also influence 
its protein quality-control capacity4,23. In C. elegans, the 
general decline of protein quality control happens at an 
early stage of adulthood and thus is an early molecular 
event during cellular ageing in this organism40.

Structural features of aggregates
Protein aggregates were initially classified, based on 
electron microscopy, as either apparently amorphous 
(for example, bacterial inclusion bodies generated 
on the overproduction of recombinant proteins) or  
amyloid-like. Meanwhile, it became apparent that such 
classification is an oversimplification as, for example, 
bacterial inclusion bodies have been demonstrated 
to contain amyloid-like structures41. Intramolecular 
β-sheets have now been recognized as a common struc-
tural element of aggregates and are shared by both 

Figure 1 | overview of cellular protein aggregation. A protein during and after  
its synthesis at the ribosome folds through different intermediates to its native, 
three-dimensional structure. Proteotoxic stresses, mutations in the synthesized  
protein or translational errors can cause protein misfolding. Once present, misfolded 
intermediates can be refolded to the native state or be degraded by different cellular 
proteolysis systems that prevent the accumulation of misfolded proteins. Once the 
quality-control network is overwhelmed — for example, through persisting harsh stress 
conditions, increased amounts of aberrant proteins or in aged cells — aggregates can 
form. Their formation can be guided by molecular chaperones. Forming aggregates  
can have varying degrees of structure, ranging from mostly unstructured, disordered 
aggregates to prefibrillar species and highly ordered β-sheet-rich amyloid fibrils. 
Disordered aggregates and intermediates during amyloid formation may be degraded. 
Arrows indicate a process that can include several single steps; dashed arrows indicate  
a process of minor significance.
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apparently amorphous aggregates and amyloid fibrils. 
The degree of β-sheet organization is, however, vari-
able in the different aggregate forms, with the highest 
one present in amyloid fibrils, in which the β-sheets 
run perpendicular to the fibril axis1,25,42–44 (FIG. 1). The 
variability of protein aggregation is best illustrated by 
the finding that the morphology of protein aggregates 
generated from the same protein species can be diverse45 
and influenced by the denaturing conditions, which lead 
to different unfolding and aggregation pathways6,46. In 
an attempt to identify the underlying molecular differ-
ences in a recent study, different amorphous and fibrillar 
aggregates of the amyloidogenic amino-terminal frag-
ment of the protein HypF were generated and compared 
by nMR techniques. These morphologically different 
forms have shared but also distinct segments of the pro-
tein sequence involved in the cross-β-sheet structural 
motif 46. Furthermore, subtle structural differences in 
the interphase of interacting polypeptides that result 
in differences in the morphology and toxicity of the 
particular aggregate have been shown for some prion 
proteins47–49.

Cellular aggregate deposition sites
How do cells deal with aggregated proteins? Compelling 
evidence, such as the deposition of protein aggregates 
at specific cellular sites, suggests that protein aggrega-
tion is a much more organized process than previously 
thought (FIG. 2). The sequestration of aggregated pro-
teins can be viewed as a second cellular response that 
occurs when the quality-control system that refolds or 
degrades misfolded proteins in their soluble state has 
been overrun.

Directing aggregated proteins to specific compart-
ments can protect the cellular environment from poten-
tially deleterious protein species. As shown for certain 
amyloidogenic proteins, it becomes more and more 
evident that soluble oligomers themselves, rather than 
insoluble amyloids in their microscopically visible final 
state, are cytotoxic25. The formation of amyloid aggre-
gates may even have a cytoprotective function28,50–55. 
organizing protein aggregates might also facilitate the 
efficiency of aggregate removal in a subsequent phase56–58.  
Although the spatial sequestration of misfolded proteins 
seems to be a common strategy of all cells, the specific 
localization of deposition sites differs between organisms 
and depends on the particular aggregation-prone pro-
tein, the cellular compartment and the stress conditions 
causing protein misfolding. We do not cover the specific 
features of each aggregating species here, but we give 
some examples of more general, and better-characterized, 
deposition processes.

Deposition sites for protein aggregates in bacteria. 
Aggregates of endogenous proteins can form in bacteria, 
particularly under heat or oxidative stress conditions59,60. 
Furthermore, insoluble inclusion bodies frequently form 
in bacteria and also in eukaryotic cells that overexpress 
heterologous proteins61,62. usually one or two inclusions 
form per cell, predominantly at the cell poles but also 
in mid- or quarter-cell positions, which are future sites 
for septation63–65. So far, the best quantitative analysis of 
protein aggregation has been established for heat-treated 
Escherichia coli cells. In E. coli, ~1.5–3% of total cytosolic 
proteins can aggregate and individual inclusion bodies 
contain ~2,400 –16,500 protein molecules. The number 

Figure 2 | Pathways for the cellular sequestration of protein aggregates. a | In bacteria, misfolded proteins can 
accumulate in inclusion bodies under different conditions, such as the heterogenous expression of proteins or stress. 
Inclusion bodies often form at the periphery of the cell. Nucleoid exclusion is sufficient to control the polar localization  
of aggregated proteins. Energy-driven active processes may contribute to the deposition of misfolded proteins in 
inclusion bodies. b | Yeast cells possess distinct protein quality-control compartments, the juxtanuclear quality-control 
compartment (JUNQ) and the perivacuolar insoluble protein deposit (IPOD). Soluble, misfolded, ubiquitylated proteins 
can be disposed at the JUNQ, whereas insoluble, terminally aggregated proteins can accumulate at a perivacuolar site. 
Disruption of the cytoskeleton disturbs the targeting to both compartments. c | JUNQ- and IPOD-like compartments have 
also been seen in mammals and are distinct from the perinuclear aggresomes where misfolded, ubiquitylated proteins 
accumulate. The aggresome is a vimentin-enwrapped structure located at an indentation of the nucleus surrounding  
the centriole. Aggresome formation requires the adaptor histone deacetylase 6 (HDAC6), which binds to ubiquitylated 
proteins on the one hand and the microtubule minus-end motor protein dynein on the other hand. Other sequestration 
pathways in yeast and mammals have been reported but are not shown.
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of proteins that are vulnerable to thermal unfolding and 
aggregation is surprisingly high, ranging from 150–200 
individual protein species65,66.

In E. coli, such aggregates are typically localized to the 
old cell pole for reasons that are still unclear64,65 (FIG. 2a). 
The mechanism by which aggregating proteins reach 
the cell poles is controversial. one study claims that an 
active, energy-driven process is responsible for polar 
localization67. by contrast, a second study demonstrated 
that nucleoid occlusion is necessary and sufficient  
for controlling the polar localization of aggregated pro-
teins, indicating a passive mechanism for aggregate 
sequestration65.

Deposition sites for protein aggregates in yeast. Protein 
aggregation in eukaryotic cells is often studie d in 
Saccharomyces cerevisiae68. When yeast cells are exposed 
to severe heat stress, aggregated proteins form multi-
ple electron-dense foci of different sizes dispersed 
throughout the cytoplasm and nucleus, as visualized 
by transmission electron microscopy. no obvious spe-
cific compartmentalization was observed for this type 
of aggregate33. notably, most of these aggregated pro-
teins can be reactivated by chaperones during a recovery 
phase (see below).

Proteins that form aggregates in yeast and that are 
not refolded to the native state include oxidatively dam-
aged proteins35, proteins that are marked for degrada-
tion by ubiquitin58, amyloidogenic proteins such as 
yeast prion s69,70 and polyglutamine model proteins (for 
example, Htt103Q — the first exon of huntingtin, with a 
stretch of 103 Gln residues)71–73. The pattern of aggrega-
tion of these protein classes is diverse and there may be 
various ways of organizing them. For example, it was 
shown for some substrates of each class that they can 
localize, at least partially, to one of two recently identi-
fied specialized quality-control compartments for the 
deposition of aggregated proteins58 (FIG. 2b). one com-
partment adjacent to the nuclear membrane, termed the 
juxtanuclear quality-control compartment (JunQ), trans-
iently accumulates misfolded proteins that are ubiquit-
ylated and are presumably substrates for proteasomal 
degradation. Substrates at the JunQ are still mobile and 
exchange rapidly with the surrounding cytoplasm. The 
second compartment adjacent to the vacuole, termed 
the insoluble protein deposit (IPoD), harbours terminally 
aggregated, insoluble proteins, including carbonylation-
sensitive proteins74 and amyloidogenic proteins such as 
Htt103Q or the yeast prions [RnQ] and [uRe3] (REF. 58). 
Strikingly, substrates for either compartment could be 
directed to the other compartment by experimentally 
manipulating the ubiquitin proteasome system. Impairing 
ubiquitylation of misfolded substrates — for example, 
through deletion of the E2 ubiquitin-conjugating enzyme 
pair ubc4–ubc5 — led substrates of the JunQ to be 
directed to the IPoD, whereas introducing a ubiquityla-
tion site into otherwise typical IPoD substrates allowed 
targeting to the JunQ58. Thus, the overall picture is that 
ubiquitylated proteins that are usually substrates for 
proteasomal degradation can be stored reversibly in the 
JunQ compartment when the capacity of proteasomal 

degradation is limiting. by contrast, terminally misfolded 
proteins that are not usually turned over by the protea-
some are deposited more permanently at the IPoD. 
Furthermore, the IPoD could serve as an overflow 
compartment when the ubiquitin proteasome system is 
overwhelmed. This raises several intriguing questions, 
foremost of which is the mechanism by which the mis-
folded proteins are recognized, sorted and transported 
to the JunQ and IPoD. It is also not clear what the fate 
of the aggregated proteins in the IPoD and JunQ are. 
JunQ- and IPoD-like compartments have also been 
observed in mammalian cells58.

The mammalian aggresome. A specialized form of 
inclusion bodies in the cytoplasm of mammalian cells is 
termed the aggresome75,76 (FIG. 2c). Aggresomes are not 
permanently present in the cell, but form in numerous 
disease states62,77, as a result of the expression of several 
heterologous proteins — including cystic fibrosis trans-
membrane conductance regulator (CFTR)76 and a green 
fluorescent protein (GFP)–p115 chimaera75 — and on 
inhibition of the proteasome. Aggresomes localize to an 
indentation of the nuclear envelope at the micro tubule-
organizing centre (MToC) and often surround the centri-
ole. The exterior of aggresomes is sheeted by a cage-like 
shell formed by the intermediate filament vimentin. 
Their overall structure and size varies and depends on 
cell type and the aggregating substrate. Most aggresomes 
appear as a single sphere of 1–3 μm diameter or as an 
extended ribbon62,75–77.

As shown for a GFP–p115 fusion protein, aggresome 
formation is initiated by the formation of smaller aggre-
gates in the periphery, which then move in a dynein-
based manner along the microtubule cytoskeleton to the 
final perinuclear site at the MToC75. Although ubiquityl-
ation of the substrate is generally considered to be a pre-
requisite for its recognition and transport to aggresomes, 
it could not be shown for all the substrates found in 
aggresomes, which leaves the possibility that signals other 
than ubiquitylation may also be involved62,77. The trans-
port of aggregated proteins to aggresomes is mediated 
by histone deacetylase 6 (HDAC6), which functions as 
an adaptor that binds polyubiquitin chains of substrates 
and the microtubule motor protein dynein, thereby 
mediating the transport of polyubiquitylated cargo along 
microtubules towards the MToC during aggresome  
formation78 (FIG. 2c). The e3 ubiquitin ligase Parkin, 
which promotes the degradation of several substrates, 
has been suggested to recognize misfolded proteins and 
mark them by Lys63-linked polyubiquitylation29. This may 
provide one type of signal for HDAC6-dependent trans-
port and sequestration of misfolded proteins to the aggre-
some under conditions of proteasomal impairment, for 
example in pathogenic situations29,79.

notably, HDAC6 has also been implicated in the regu-
lation of cellular stress responses by being a component 
of a HDAC6–HSF1–HSP90 complex, which represses 
the stress response by trapping the transcription factor  
heat shock factor 1 (HSF1). The binding of HDAC6 
to ubiquitylated aggregates may cause the release and 
activ ation of HSF1. This offers the possibility of coupling 
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the sensing of aggregated proteins by HDAC6 to an 
increased chaperone expression, thereby initiating a 
cell ular response to counteract the accumulation of 
misfolded protein species80.

Reversal of protein aggregation
Aggregation is not necessarily a dead-end situation for 
a protein in vivo as disaggregation followed by refolding 
of aggregated proteins has been observed in cells from 
diverse species, from bacteria to humans. Disaggregation 
is not achieved by a single activity, but by different 
c ellular machineries, as summarized in TABLE 1.

Protein disaggregation by a bi-chaperone system. The 
reversibility of protein aggregation was first demon-
strated for S. cerevisiae33. Heat-aggregated proteins in the 
cytosol and nucleus are reactivated by the cooperative 
action of the Hsp70 system, composed of Ssa1 and the 
J protein co-chaperone yeast DnaJ protein 1 (Ydj1), and 
the oligomeric, ring-forming AAA+ chaperone Hsp104 
(REF. 81). A comparable activity exists in E. coli, provided 
by the bi-chaperone system of the corresponding ortho-
logues of the Hsp104 (Clpb), Ssa1 (DnaK) and Ydj1 
(DnaJ) chaperones66,82. notably, each chaperone com-
ponent on its own has only limited (the Hsp70 system) 
or no (Hsp104 and Clpb) disaggregation activity.

This bi-chaperone system is also found in the cytosol 
of most other bacteria, plants and several unicellular 
eukaryotes, and in mitochondria and chloroplasts of 
unicellular and multicellular eukaryotes. Its activity 
efficiently counteracts the damaging effects of severe 
stress situations, and the induction of its expression by 
a sub-lethal heat treatment even enables cells to trans-
iently survive a subsequent, severe heat shock treatment 
that is normally lethal, a phenomenon referred to as 
thermotolerance83–85. Further experiments showed that 
for E. coli and yeast cells the main reason for the loss of 
viability under such severe stress conditions is the mas-
sive loss of protein activity by misfolding and aggrega-
tion and that thermotolerance requires the bi-chaperone 
mediated reactivation, rather than the degradation, of 
aggregated proteins84,86.

The mechanism of protein disaggregation by this 
bi-chaperone system involves an essential activity 
of the Hsp70 system during the initial phases of the 
process86,87 (FIG. 3). The binding of Hsp70 and J pro-
teins to aggregates restricts the access of proteases to 
the aggregates and allows the transfer of aggregated 
polypeptides to the substrate-processing pore of Clpb 
or Hsp104 (REFS 88,89) (FIG. 3). These two functions 
combined provide a mechanism for pathway selection,  
in which the refolding pathway is preferred over the 

Table 1 | Molecular chaperones and proteases implicated in protein disaggregation

chaperone organism Structure and 
oligomeric state

aTP 
binding

activity

ClpB or 
Hsp104 

Bacteria, yeast, plants 
and mitochondria of 
animals

Hexamer Yes Reactivation of aggregated proteins in 
cooperation with an Hsp70 chaperone 
system

Hsp70 Bacteria, archaea and 
eukaryotes (cytosol, 
ER, mitochondria and 
chloroplasts)

Monomer Yes Prevention of aggregation, reactivation 
of aggregated proteins in cooperation 
with ClpB or Hsp104, and folding of newly 
synthesized proteins and misfolded protein 
species

sHSPs Bacteria, archaea and 
eukaryotes (cytosol)

8–24-mer No Prevention of irreversible protein 
aggregation

AAA+ proteases Bacteria and 
eukaryotes 
(mitochondria and 
chloroplasts)

Hexamer (for 
example, ClpA 
and ClpC) and 
heptamer (for 
example, ClpP) 

Yes Degradation of misfolded or aggregated 
protein species and of native proteins 
harbouring specific degradation tags

26S proteasome Eukaryotes (cytosol) Hexamer (for 
AAA+ proteins) 
and heptamer (for 
α- and β-subunits)

Yes Degradation of polyubiquitylated proteins 
(including misfolded and native proteins 
harbouring specific degradation tags)

VCP  Eukaryotes (cytosol) Hexamer Yes Degradation of misfolded ER proteins and 
membrane fusion

ER, endoplasmic reticulum; sHSP, small heat shock protein; VCP, valosin-containing protein.
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degradation pathway, with the concomitant benefit 
for cell survival during severe stress. The Hsp70- and 
J protein-mediated transfer of aggregated proteins 
involves the Clpb- or Hsp104-specific middle domain 
(termed the M domain) that is lacking in other AAA+ 
family members88. The precise mechanism of this chap-
erone interplay is still not well understood. DnaK may 
remodel protein aggregates leading to the exposure 
of substrate stretches that are recognized by Clpb or 
Hsp104. Alternatively, the cooperation may involve 
a direct physical interaction between both chaper-
ones, a scenario that is supported by the fact that their 
co operation in aggregate solubilization shows strong 
species specificity (that is, combinations of bacterial 
and yeast components are not active)81. After substrate 
transfer, Clpb or Hsp104 exert a threading activity 
leading to the one-by-one extraction of misfolded 
polypeptides from the aggregate86,90. Substrate thread-
ing is mediated by pore-located aromatic residues, 
which pull the substrate on ATP consumption into the 
central trans location channel86,90,91 (FIG. 3). notably, Clpb 
and Hsp104 are equipped with a remarkable flexibility, 
allowing them to thread internal aggregated segments 
of substrates into the central pore in a looped conform-
ation. Substrate threading is arrested when Clpb or 
Hsp104 encounter a tightly folded domain leading  
to substrate dissociation, a process that ensures opti-
mal substrate refolding89. This may involve additional 
assistance by Hsp70 chaperones and chaperonins.

The role of sHSPs in organizing and solubilizing protein  
aggregates. The chaperone-mediated protein dis-
aggregation process is further facilitated by sHSPs that 
directly interact with aggregating proteins92,93 (FIG. 4). 
For example, the E. coli sHSPs inclusion body-binding 
protein A (IbpA) and Ibpb were initially identified by 
their tight association with bacterial inclusion bodies94. 
sHSPs are the most widespread molecular chaper ones 
with an increasing number of family members in 
multicellular eukaryotes. They share the α-crystallin 
domain and also have variable extensions at the n and 
C termini93. Their synthesis and chaperone activity is 
often tightly controlled by temperature, allowing them 
to activate sHSP function on demand92,95,96. sHSPs bind 
tightly to misfolded protein species, resulting in the 
formation of sHSP–substrate complexes that do not 
release bound proteins spontaneously, thereby cre-
ating a reservoir of misfolded proteins during stress 
conditions. Such complexes are still aggregates, but of 
reduced size and altered composition95,97. It is tempting  
to speculate that sHSPs might even function to seed 
the aggregation of misfolded protein species, thereby 
controlling the aggregation process in the cell and 
potentially even directing aggregates to specific 
cellular sites.

sHSP-induced changes in aggregate architecture 
allow for more efficient disaggregation by the bi-
chaperone system and contribute to the development 
of thermotolerance98–100. In addition, incorporation of 
sHSPs into aggregates allows for protein disaggrega-
tion by the Hsp70 chaperone system97,101,102 (FIG. 4). The 
increased number of sHSP species in multicellular 
eukaryotes might potentially enable Hsp70 chaperones 
to work productively on aggregates even without the 
cooperation of an Hsp104-like AAA+ chaperone.

Other disaggregation activities. In bacteria, several 
additional AAA+ chaperones (for example, ClpA, ClpC 
and Clpe from E. coli and Bacillus subtilis), which act 
in proteolysis by complex formation with peptidases 
(such as ClpP) (see TABLE 1), have been shown to possess  
a disaggregation activity in vitro, underlining the 
unique capacity of the AAA+ protein family to act on 
aggregates103,104. However, their contribution to protein 
disaggregation in vivo has not yet been fully clarified.

It is remarkable that Clpb and Hsp104 homologues 
exist only in the mitochondria and chloroplasts of 
higher eukaryotes. organisms that encode cytosolic 
Clpb and Hsp104 homologues lack large-scale mobility  
and cannot escape exposure to sudden and severe 
environ mental changes such as thermal stress. The find-
ing that the expression of Hsp104 leads to a substantial 
increase in the disaggregation activity in human cell 
lines and in C. elegans indicates that the disaggregation 
capacity is limited in such organisms105,106. nevertheless, 
various studies showed that animal cells can solubi-
lize aggregates, demonstrating the existence of a dis-
aggregation activity in the absence of Clpb or Hsp104 
(REFS 53,107,108). The identity of this activity is not yet 
clear, but may involve the action of Hsp70 chaperones 
and sHSPs.

Figure 3 | Protein disaggregation by the Hsp104–Hsp70 bi-chaperone system.  
The 70-kDa heat shock protein 70 (Hsp70) system, consisting of the ATPase Hsp70 and  
a co-chaperone of the Hsp40 family, interacts first with protein aggregates. The initial 
binding of Hsp70–Hsp40 has two functions. First, it restricts access of AAA+ proteases 
to the aggregates and, second, it allows for substrate transfer to the ClpB (or the yeast 
homologue, Hsp104) disaggregase. Such transfer might require a physical interaction 
between the cooperating chaperones or be based on the Hsp70–Hsp40-mediated 
exposure of ClpB- or Hsp104-binding sites in the aggregate. ClpB or Hsp104-mediated 
disaggregation is regulated by a threading activity. Conserved aromatic residues (Tyr) 
are located on mobile loops at the central pore and contact substrate proteins. ATP 
binding and hydrolysis are suggested to cause conformational changes of the loop 
segments, generating a pulling force that drives the translocation of substrate  
segments through the ClpB or Hsp104 hexamer.

R E V I E W S

782 | noveMbeR 2010 | voluMe 11  www.nature.com/reviews/molcellbio

© 20  Macmillan Publishers Limited. All rights reserved10



Oligomer
Dimer

sHSP–substrate
complex

Disaggregation

Hsp70ClpB and Hsp70

Low substrate
affinity

High substrate
affinity

Heat shock

Heat shock

Heat shock

Misfolded protein Native protein

Autophagosome
A double-membrane vesicle in 
the cytoplasm that includes 
intracellular components for 
lysosomal degradation.

The ATP- and ubiquitin-dependent AAA+ chaperone 
valosin-containing protein (vCP; also known as p97)  
is another candidate for exerting disaggregation activity 
in the cytosol of animal cells (see TABLE 1). like Clpb 
and Hsp104, vCP contains two ATPase domains and 
acts in numerous cellular activities by cooper ating with 
many adaptor proteins109. vCP mutations are linked 
to inclusion body myopathy with early-onset Paget’s 
disease and frontotemporal dementia (IbMPFD) and 
loss of vCP function in mammalian cells leads to the 
accumulation of insoluble ubiquitylated proteins110,111.  
vCP also associates with polyubiquitylated aggregates 
generated on proteasomal inhibition, and their sub-
sequent solubilization requires vCP activity112. Direct 
evidence for a disaggregation activity of vCP is, how-
ever, still missing. The potential function of vCP in 
aggregate clearance may relate to its role in aggresome 
formation113. Thus, vCP mutations can lead to changes 
in aggregate localization, thereby potentially affecting 
aggregate clearance.

Distinct roles of the ubiquitin proteasome system 
in formation and clearance of protein aggregates. 
Degradation by cellular proteases is an alternative route 
for the elimination of protein aggregates. In view of the 
limited refolding activity found in higher eukaryotes, 
the degradation route might have gained increasing 
importance in multicellular organisms. The 26S pro-
teasome is the central cellular machine responsible for 
the degradation of soluble, misfolded proteins, thereby 
preventing protein aggregation (TABLE 1). Inhibition of 
proteasomal degradation can cause neurodegenera-
tion, underlining the crucial function of the ubiqui-
tin proteasome system in protein degradation114, 115. 

Misfolded proteins are recognized and marked for deg-
radation by different specific e3 ubiquitin ligases, often 
in concert with Hsp70 chaperones. The most promi-
nent examples of e3 ubiquitin ligases are C terminus 
of HSP70-interacting protein (CHIP) in mammals116, 
ubr1 and San1 in yeast117–119,120, and HMG-CoA reduct-
ase degradation protein 1 (Hrd1; also known as Der3) 
and Doa10 for proteins derived from the endoplasmic 
reticulum13.

A role of the ubiquitin proteasome system in the deg-
radation of pre-existing protein aggregates is suggested 
by the presence of ubiquitylated proteins in protein 
inclusions, the frequent co-localization of the 26S pro-
teasome with protein aggregates and the increased 
aggregate formation and delayed removal of aggre-
gates on inhibition of proteasomal activity57,76,115,121–124. 
However, the involvement of the ubiquitin proteasome 
system in aggregate clearance may be less important 
than suggested by these observations. The 26S pro-
teasome cannot degrade aggregates in vitro125,126, and 
aggregates even reduce proteasomal activity in vivo127 
by irreversible sequestration of proteasomes or other 
effects128,129. Together, these findings do not support a 
major contribution of 26S protea somes in the removal 
of pre-existing aggregates. They also indicate that the 
increased levels of aggregated proteins observed on 
proteasomal inhibition are a consequence of increased 
levels of misfolded proteins caused by substrate stabi-
lization and the obstruction of other quality-control 
pathways.

Aggregate clearance by autophagy
Macroautophagy uses specialized, cytosolic, double-
membrane structures that engulf substrates to form 
autophagic vesicles that ultimately fuse with the lyso-
some for degradation of their content19,20. It has tradi-
tionally been viewed as a rather unspecific degradative 
pathway, in which cytosolic contents and organelles are 
turned over in a non-selective manner. More recently, 
however, a form of selective macroautophagy has 
been identified as a major contributor in the clearance  
of misfolded and aggregated proteins in the cytosol of 
mammalian cells14,18–20. Initially, aggregates of pro-
teins involved in neurodegenerative disease, such as 
α-synuclein or mutant huntingtin, were identified 
as substrates for this type of autophagy130–132, which was 
regarded as a back-up system to complement protea-
somal degradation when it is overwhelmed or incapable 
of dealing with specific aggregated substrates. In agree-
ment with this, autophagy was also suggested to have 
a role in the clearance of aggresomes130,131,133,134 (FIG. 5). 
Interestingly, one of the main players of aggresome 
formation, HDAC6, also controls a step that is essen-
tial for aggregate turn over by autophagy; the fusion  
of autophagosomes with lysosomes by the recruitment of  
the actin-remodelling machinery that is involved in this 
process135. An implication for autophagy in the clear-
ance of misfolded proteins under more physiological 
conditions came from the observation that the con-
ditional knock out of genes essential for autophagy, 
autophagy protein 5 (Atg5) and Atg7, in mouse liver and 

Figure 4 | The role of small heat shock proteins in protein aggregation. Small heat shock 
proteins (sHSPs) are in equilibrium between oligomeric structures and exchanging subunits. 
They can exist in two states, with a low and high substrate affinity, respectively. During heat 
shock, the equilibrium shifts towards the high affinity state, which can then form a stable 
complex with substrates, such as the misfolded proteins that arise during the heat shock. 
The stable sHSP–substrate complex is thought to prevent irreversible aggregation and 
can facilitate the re-solubilization of aggregated proteins by the bi-chaperone system, 
consisting of Hsp104 and the Hsp70 chaperone system, or by Hsp70 only.
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brain led to hepatic dysfunction and a neurodegenera-
tive disease phenotype, respectively. The knockout mice 
accumulated ubiquitin-positive aggregates that were not 
present in wild-type littermates136–138. basal autophagy 
therefore seems to be of more biological importance 
under physiological conditions, as previously recog-
nized. Furthermore, autophagy may also protect from 
neurodegeneration by reducing the levels of potentially 
toxic diffuse or oligomeric protein species. However, 
this hypothesis is still controversial139.

The clearance of misfolded proteins through 
autophagy and the ubiquitin proteasome system is 
interconnected, as impairment of the ubiquitin protea-
some system induces compensatory autophagy114,130, the 
conditional knock down of autophagy in mice brains 
leads to the accumulation of ubiquitylated proteins136–138 
and genetic knock down of autophagy leads to the inhi-
bition of proteasomal substrate turnover139. The target-
ing signal of ubiquitylated proteins for autophagy is 
still unclear. Initial evidence suggests that lys63-linked 
ubiquitylation may promote the autophagic clearance 
of protein inclusions29,79,140, but additional experimental 
evidence is needed to establish this.

In the search for a factor that would couple misfolded 
and aggregated ubiquitylated proteins to autophagy, 
p62 was suggested to function as a cargo receptor. p62 
can bind ubiquitylated proteins through its ubiquitin- 
associate d (ubA) domain and a component of auto phagic 
vesicles, the mammalian Atg8 homologue light chain 3 
(lC3), through its lC3-interacting region (lIR)141,142  
to control the packing of ubiquitylated substrates into 

autophagosomes (FIG. 5). p62 is a common component 
of aggregates of mutant huntingtin protein, lewy bodies 
or neurofibrillar tangles143–146. The genetic ablation of 
p62 in ATG7-deficient mice suppressed the appearance 
of ubiquitin-positive protein aggregates in hepatocytes 
and neurons147, which suggests that p62 also controls 
intra cellular inclusion body formation. Another more 
recently identified protein that acts in the same pathway 
as p62 is next to bRCA1 gene 1 (nbR1). Similarly to 
p62, nbR1 binds polyubiquitin and lC3 on autophagic 
vesicles, thereby promoting autophagy of ubiquitylated 
substrates. Interestingly, recruitment of ubiquitin-
positive cargo to the lysosome requires both p62 and 
nbR1 (REF. 148) (FIG. 5). Furthermore, the scaffolding 
protein autophagy-linked FYve protein (AlFY; also 
known as WDFY3) was suggested to bridge cargo to the 
autophagic machinery by interacting with protein com-
plexes containing p62 on the one hand and ATG5 on the 
other hand149. Taken together, these findings indicate 
an important role for the autophagy machinery in the 
specific, receptor-mediated clearance of misfolded and 
aggregated proteins18,19,150.

Asymmetric aggregate partitioning
Although the sequestration of misfolded proteins in 
large, insoluble inclusions can have a protective role, the 
presence of protein aggregates is still a damage load for 
the cell. Aggregates could, for example, sequester other 
cellular proteins, including protein quality-control com-
ponents, thereby impairing the overall cellular protein 
homeostasis and consequently lowering the fitness of 
the cell4127,151–153. The destiny of protein aggregates during 
cell division has therefore gained increasing attention. 
Are aggregates equally distributed between daughter 
cells or are they specifically retained in one cell lead-
ing to an asymmetric population of cells with high and 
low damage loads? Recent findings suggest that the 
strategy to inherit protein aggregates asymmetrically 
between two dividing cells is a general, ancient principle 
that can be found in organisms ranging from bacteria 
to mammals.

Aggregate segregation in E. coli. In E. coli, the accumu-
lation of aggregated proteins correlates with increased 
cellular ageing64,65,154. The localization of aggregates at 
cell poles might enable bacterial cells to regain faster 
growth rates as it allows for the generation of damage-
free cells by one or two cell divisions. Cell division can 
thereby act as a bypass mechanism to remove persisting 
protein aggregates. The asymmetry in the case of E. coli 
cells harbouring a single protein aggregate at the old pole 
allows for the generation of aggregate-free daughter cells 
on cell division (FIG. 6a). Importantly, the cells with old 
poles that carry the inclusion have reduced growth rates 
and a slower division time compared with the inclusion- 
free daughter cells64,65. Recent data demonstrate that 
abolishing the asymmetric distribution of protein 
aggregates diminishes growth rate and division speed 
differences between the E. coli cells emerging from a cell 
division65. This suggests that sibling-specific ageing may 
be the result of protein aggregate segregation.

Figure 5 | a model for the selective autophagic 
degradation of protein aggregates. Ubiquitylation of 
protein aggregates is a signal that triggers binding of the 
adaptor proteins next to BRCA1 gene 1 (NBR1) or p62, 
which also binds light chain 3 (LC3; the mammalian 
homologue of autophagy protein 8 (Atg8)) conjugated 
with lipids in the double membrane of the forming 
autophagosome. This allows cargo to be included in the 
forming autophagosome, which subsequently fuses with 
lysosomal compartments to release its inner-membrane 
vesicle with included cargo for hydrolytic cargo 
degradation. HDAC6, histone deacetylase 6;  
PE, phosphatidylethanolamine.
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Aggregate segregation in yeast. Yeast cells can undergo 
a finite number of divisions before they die, and this is 
defined as their replicative lifespan. When a yeast cell 
divides, this replicative lifespan is also segregated asym-
metrically, as the lifespan of the daughter cell is ‘reset’ 
to zero, whereas the lifespan of the mother cell depends 
on the number of divisions it has undergone. This led 
to the proposal that there must be one or more factors 
that accumulate and cause senescence when they reach 
a crucial threshold155,156. Protein aggregates, and particu-
larly carbonylated proteins, have been suggested as such 
possible senescence factors157. Carbonylated proteins 
progressively accumulate over time in yeast and also in 
higher eukaryotes35,155. Yeast cells are able to segregate 
oxidatively damaged proteins in an asymmetric man-
ner, leaving the daughter cell largely free of damaged 
proteins while the mother cell retains them. This asym-
metry in damage distribution during budding is likely 
to have important implications in cellular ageing and 
the rejuvenation of progeny39,157. The mechanism of this 
specific damage retention and retrograde damage trans-
port is largely unknown. However, the observation that 
the asymmetric distribution of aggregates, such as car-
bonylated proteins, towards the mother cell during cell 
division involves the actin cytoskeleton157 (see below) 
and requires the cellular machinery for establishing 
actin-based cell polarity158,159, suggests that these aggre-
gates might somehow become tethered to actin cables 
(FIG. 6b). Interestingly, aggregates are not only retained in 
mother cells during division, but can even be retracted 
from the buds158. Another intriguing link is that Hsp104 
plays a part in the establishment of cell polarity through 
genetic and physical interaction with components of the 
polarisom e and the septin ring159. This raises the possibility 
of a regulatory link between formation of the bud and 
the quality-control system of protein aggregates.

Aggregate segregation in metazoans. Asymmetric distri-
bution of misfolded and aggregated proteins has also 
been reported for mammalian cells, and in all cases the 
cell with the shorter life expectancy receives the protein 
aggregates160,161. In mammalian crypts of the small intes-
tine from patients with a polyglutamine disease termed 
spinocerebellar ataxia type 3, the forming aggresomes 
segregate to the short-lived differentiated cell rather than 
to the intestinal stem cell161. Similarly, in a Drosophila 
melanogaster embryonic neuroblast model expressing 
a heterologous polyglutamine huntingtin fragment, the 
aggresomes segregate to the short-lived neuroblast rather 
than the long-lived ganglion mother cell161.

The asymmetric distribution of aggresomes is thought 
to be coupled with the asymmetric inheritance of centro-
somes160–162. before division, the centrosome consists of 
a centriole and the pericentriolar material163. During 
cell division, after the centriole has duplicated, the peri-
centriolar material stays preferentially associated with 
the mother centriole, whereas the daughter centriole that 
separates and migrates to the opposite cell pole lacks any 
defined pericentriolar material until it has reached its 
destination164–166. Aggresomes form at the MToC62,77 
and thereby occupy the same region as the pericentriolar 

material, which offers the possibility that the retention of 
both structures specifically in one cell (the mother cell) 
could be linked. Indeed, the inherited misfolded pro-
teins destined for degradation localize to only one of the 
centrosomes160. However, the generality of such a possi-
ble mechanism is not yet clear. In yeast, for instance, 
the two protein aggregates described recently (IPoD 
and JunQ) are inherited asymmetrically but neither 
are associated with the spindle pole body, which is the 
yeast equivalent of the mammalian centrosome58. It is 
likely that more species- and cell type-specific differ-
ences in the mechanisms of aggregate inheritance will 
be discovered.

Figure 6 | asymmetric distribution of damaged 
proteins as a strategy for rejuvenating the progeny. 
a | In Escherichia coli cells, inclusion bodies are localized  
to the old cell pole and consequently stay in the older cell 
after division, which displays a reduction in growth rate. 
Nucleoid exclusion is sufficient for this inclusion body 
localization. b | In yeast cells, diffuse carbonylated  
proteins, larger aggregates of carbonylated proteins and 
unspecified protein aggregates reside in the mother cell 
during cell division. Visible aggregates can even be 
transported back from the bud into the mother cell.  
Actin cables, the polarisome and 104-kDa heat shock 
protein (Hsp104) are required for this asymmetric 
distribution, which may be achieved by the tethering of the 
aggregates to actin cables by the action of Hsp104. Actin 
cable flow from the daughter cell to the mother cell results 
in the retention of tethered aggregates in the mother cell.
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