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Abstract Neurodegenerative diseases and other protein-

opathies constitute a class of several dozen illnesses

etiologically linked to pathological protein misfolding and

aggregation. Because of this strong association with dis-

ease pathology, cell death, and aging, accumulation of

proteins in aggregates or aggregation-associated structures

(inclusions) has come to be regarded by many as a dele-

terious process, to be avoided if possible. Recent work has

led us to see inclusion structures and disordered aggregate-

like protein mixtures (which we call dynamic droplets) in a

new light: not necessarily as a result of a pathological

breakdown of cellular order, but as an elaborate cellular

architecture regulating function and stress response. In this

review, we discuss what is currently known about the role

of inclusion structures in cellular homeostasis, stress

response, toxicity, and disease. We will focus on possible

mechanisms of aggregate toxicity, in contrast to the

homeostatic function of several inclusion structures.
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Introduction

Protein inclusions or aggregate structures have often carried

a negative connotation, in part because researchers initially

encountered protein aggregation and inclusion body (IB)

formation either as biochemists or as clinicians. For a bio-

chemist trying to purify a functional protein, for example

from E. coli, aggregation in IBs is usually bad news as it

portends a dysfunctional state of the protein that can, at best,

be salvaged after prolonged attempts at solubilization and

refolding. For a physician, aggregation and IB-like struc-

tures are most readily associated with a family of

devastating diseases, such as amyotrophic lateral sclerosis

(ALS), Alzheimer’s (AD), Parkinson’s (PD), Huntington’s

(HD), dementias, ataxias, several additional CAG-repeat

diseases, and many other conformational disorders [1, 2].

Although prokaryotic IBs have properties that are lar-

gely distinct from eukaryotic aggregate structures, the term

‘‘inclusion body’’ or just ‘‘inclusion’’ has been widely

coopted to refer to insoluble or weakly soluble protein

deposits in eukaryotes, as well as the classic bacterial IB.

When inclusions were first examined as a cell biological

phenomenon, much of the focus was still on their role as

hallmarks of disease. In several seminal studies [3–19],

disease-associated proteins such as polyglutamine (polyQ)

Huntingtin, ALS-associated SOD1 mutants (e.g. G93A),

the a-synuclein protein and mutants linked to PD and other

synucleinopathies, Cystic Fibrosis-causing mutant

CFTRDF508, and AD-associated Ab-peptides were all

shown to accumulate in inclusion structures (sometimes

called aggresomes) when expressed in cultured cells or

heterologously in other model systems. These inclusion

structures exhibited many of the same features as those

seen in pathology samples from disease tissue (including

co-immunostaining with ubiquitin, chaperones, and
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staining with amyloid dyes such as Congo Red and Thi-

ophlavin T) [20–24]. Indeed, when these pathogenic

proteins were expressed in cultured cells or model organ-

isms they often caused toxicity and cell death [25–35]. It

was initially unclear whether inclusions were a non-phys-

iological response to extreme conditions (wide-spread

protein misfolding or over-expression of an aggregation-

prone protein) or whether they were basic functional units

of the cellular response to stress and misfolding. Less clear

still was whether the formation of inclusions was part of a

protective mechanism utilized by the cell to prevent protein

misfolding-induced toxicity [36, 37], a product of dysreg-

ulation that may instead cause toxicity, or a peripheral by-

product of the quality control machinery having been

depleted or having otherwise gone awry [11, 38].

Recent developments, including the discovery of inclu-

sion formation pathways in the single cell eukaryote,

Saccharomyces cerevisiae, have the potential to change the

way inclusion-like structures are viewed. Whereas initially

in the ‘‘aggresome model’’ inclusions were hypothesized to

have a single ‘‘zip code,’’ much like a classic organelle, as

well as a fixed (juxtanuclear) localization and function, it is

now becoming apparent that in both yeast and higher

eukaryotes inclusion-like structures exhibit a dynamic

ensemble of functions, properties, and resident factors. The

goal of this review was to outline recent conceptual

advances in the field of cytoplasmic inclusion-like struc-

tures, suggesting that they are part of a broader class of

membrane-less nano-scale macromolecular assemblies, or

Dynamic Droplets, which provide the functional architec-

ture for essential cellular mechanisms including protein

and RNA quality control, stress response, and rejuvenation.

Misfolding and aggregation as a consequence of phase

transitions

Protein translation and the folding quality control mecha-

nisms that oversee its fidelity take place, for the most part, in

the cytoplasm of cells. Far from being a static water-like

homogenous entity that it is often made out to be, the cyto-

plasm is a highly dynamic complex fluid mixture, whose

properties are highly prone to stress- and age-dependent

changes. One of the most significant factors behind the

changes in cytoplasmic properties is the availability of

energy in the form of ATP. An emerging consensus is that

ATP-hydrolysis is required for the critical activity of main-

taining the dynamic fluidity of the cytoplasm [39–42].

Energy production undergoes age-related decline, and

stressful events encountered by the cell sap its ATP resources

as energy is diverted to combatting damage. When energy

resources decline, the cytoplasm drifts away from a liquid-

like state and acquires solid-phase properties [43]. Nowhere

is the impact of this transition more acute than in the main-

tenance of protein folding homeostasis [44]. Protein folding

is an energetically costly activity, and misfolding due to

limited ATP resources only increases demands for chaper-

ones and other energy-dependent factors [45]. This potential

for a deadly positive feedback loop is one explanation for the

essential role of inclusions in managing quality control by

spatially confining misfolded proteins away from bulk

cytoplasm. Perhaps not surprisingly, constituent proteins of

inclusions like structures (stress granules, p-bodies, RNP

granules, and quality control compartments) are prime tar-

gets for mutations that cause aging-related disorders

accompanied by insoluble protein deposits.

Inclusion structures

In yeast the cellular architecture of inclusion formation

reflects the complexity of the dynamic cellular response to

protein misfolding and aggregation (Fig. 1). Severe stress

in the form of pH changes (e.g. starvation), oxidative

stress, heat or cold shock, or changes in osmolarity,

invariably leads to the misfolding of a large subset of the

proteome. When a cell is initially presented with an

abundance of misfolded proteins, the protein folding

quality control machinery must decide between three dif-

ferent fates for the aberrant polypeptides. The misfolded

proteins can be refolded, degraded by the ubiquitin–pro-

teasome machinery or autophagy, or converted into a

protective insoluble (or amyloid-like) deposit. Refolding,

degradation, and active aggregation may happen simulta-

neously to different subpopulations of the protein

misfolding load, or may function in a hierarchical manner,

with refolding being the preferred option and active

aggregation as a last resort. With elegance and efficiency

that is typical of yeast, each of those quality control-

associated activities is compartmentalized in a discrete

inclusion [46]. It is not yet clear how cells triage between

these options at different times and under different condi-

tions, but it is increasingly apparent that inclusion

structures play a key role in the decision of what to do with

damaged and misfolded proteins.

Stress foci

In yeast, proteins that are targeted for refolding are col-

lected in stress foci (SFs): highly dynamic structures which

concentrate holdases (sHsp26 and 42), chaperones (Hsp70

and 110), co-chaperones (Sis1 and Ydj1), and disaggreg-

ases (Hsp104) together with misfolded proteins [47–50].

SFs form rapidly in response to stress (within minutes), and

are disassembled within 30–60 min after return to normal

conditions [51, 52]. The fate of proteins that are trapped in

SFs but cannot be refolded is not yet clear. It is possible
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that they eventually merge with the IPOD. SFs have also

been observed in mammalian cells, where they exhibit

similar properties to yeast, though no refolding from SFs

has yet been seen in mammalian cells. Additionally, in

yeast and mammals it is not yet clear what governs the

motility of SFs (Hsp104, actin, microtubules, or other

modes of transport).

JUNQ

Misfolded substrates that are targeted for proteasomal

degradation are collected and degraded in JUNQ com-

partments [46, 52, 53]. From studies that have been carried

out to date, it appears that the JUNQ is a degradation

domain formed by expansions of the outer nuclear mem-

brane, with misfolded protein substrates binding to the

cytosolic surface of the nucleus [46]. Our current model is

that by concentrating proteasomes, chaperones (Hsp70/

Ssa2, sHsp26, Btn2) [54], and possibly ubiquitination

machinery [46, 52, 53] together with degradation substrates

in a single central location, the cell gains efficiency while

avoiding the undesirable consequences of allowing mis-

folded proteasomal substrates free migration around the

cytoplasm [55, 56]. Recent studies have conclusively

demonstrated that the JUNQ is a dynamic functional

compartment, rather than a deposition or storage site [52,

53]. In mammalian cells, the JUNQ interacts with inter-

mediate filaments at distinct domains and contains active

proteasomes in others [52]. A recent study was able to

directly show turnover of misfolded proteins inside the

JUNQ [52]. It is becoming clear that the JUNQ goes

through several stages of assembly and constitution, start-

ing out as a very dynamic rapidly degrading compartment,

and transitioning to somewhat more of an ‘‘aggresome’’-

like (e.g. less mobile, less soluble) state [52]. The com-

position of proteasomes, chaperones, and cytoskeletal

elements in the JUNQ changes in accordance with this.

IPOD

Proteins that are designated for insoluble aggregate depo-

sition are sent to the IPOD. This inclusion is formed on the

surface of the vacuole and houses quality control factors

which direct the active aggregation (or amyloid formation)

of misfolded and aggregation-prone proteins [57]. Several

studies point to a protective role of the IPOD [46, 52, 57–

61]. There is evidence suggesting that when proteins with a

severe tendency to self-associate accumulate in the JUNQ/

SFs instead of the IPOD, they cause toxicity [53]. The

IPOD colocalizes with several chaperones (sHsp26/42,

vacuole
IPOD

aggregationatiaggrega e

Ubiquitination

?

Hsp104
Hsp70

nucleus
JUNQ

degradation
misfolding

Hsp40

StressFoci

Hsp
pHsp

StreHsp70

sHsps

Hsp70

insoluble
not ubiquitylated

proteins

sHsps
soluble

ubiquitylated
proteins

proteasome

Hsp40

polyubiquitin

translation

refolding

folded protein

misfolded protein
stress

Fig. 1 Spatial architecture of protein folding quality control in yeast.

Misfolded proteins are partitioned to distinct protein folding quality

control compartments. This process is regulated by the ubiquitination

status of the misfolded proteins, their solubility and concentration,

and the availability of chaperones. Under acute stress misfolded

proteins are initially trapped in stress foci, which are rapidly

reversible structures. Over a longer time-scale, proteins that can be

ubiquitinated and degraded are sent to the JUNQ for proteasomal

degradation. Proteins that are not candidates for proteasomal degra-

dation or are not ubiquitinated are targeted to the IPOD for active

aggregation in an amyloid structure. It is unclear whether stress foci

can merge with the IPOD
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Hsp104) and cofactors (Btn2), albeit transiently depending

on conditions [54, 60]. Hsp42 is a marker for the IPOD, but

under stress it can also be observed in SFs. Hsp104, on the

other hand, initially localizes to SFs immediately following

stress induction, but with time re-distributes to the IPOD,

and eventually, following prolonged high levels of stress,

can even be observed in the JUNQ [46, 51].

Triage

One of the early triage mechanisms for targeting misfolded

proteins to JUNQ or SFs versus the IPOD is the process of

ubiquitination [46, 51]. Tagging with ubiquitin is necessary

for localization of a misfolded protein to JUNQ and SFs,

and when ubiquitination is blocked there is no alternative

than targeting to the IPOD, even for proteins that are not

highly aggregation-prone [46]. As evidence for the exis-

tence of an active aggregation mechanism in the IPOD,

soluble misfolded proteins that are forced to go there by

blocking ubiquitination alter their biochemical properties

and become less soluble than their counterparts localizing

to the JUNQ or SFs. De-ubiquitination also plays a role in

targeting to JUNQ and SFs, since deletion of a quality

control-associated de-ubiquitinating enzyme Ubp3 leads to

enhanced targeting of misfolded substrates to the JUNQ for

degradation [17, 62, 63].

There is early evidence that the triage decision described

above (refolding, degradation, or aggregation) is influenced

by the conditions and stress levels of the cell. Under stress,

starvation, and upon aging, sequestration in the IPOD

becomes the dominant pathway over the more costly and

dangerous alternatives of refolding and degrading proteins

that are highly likely to misfold or aggregate in a toxic

manner [54, 58, 62, 64, 65].

Dynamic droplets: functional inclusion-like structures

It is commonplace to refer to any granular structure in the

cytoplasm as an ‘‘aggregate.’’ However, this nomenclature

is sometimes misleading, since many of these granular

structures are highly dynamic and their formation is

reversible. An updated terminology, taking into account

liquid-phase and solid-phase structures in the cell is

important to distinguish between amyloid-like aggregates

(solid phase) and dynamic liquid-phase structures such as

p-granules [45]. Hence, we refer to disordered dynamic

protein mixtures including Ribonucleoprotein (RNP)

granules and disordered inclusions of misfolded proteins as

dynamic droplets, to emphasize this distinction. These

dynamic droplets include stress granules, p-bodies, star-

vation-induced fibrils [66], JUNQ, IPOD, stress foci, and

aggresomes [46, 51, 66, 67]. The molecules forming liquid

phase dynamic droplets are thought to be held together in

the absence of membranes by multivalent promiscuous

molecular interactions, often generated by low-complexity

regions in the constituent proteins [45, 68].

Dynamic droplets consist of a variable assembly of

factors, with the constituent factors and their proportions in

the droplets itself being a dynamic property that is highly

dependent on conditions. For example, SGs and p-bodies

share many markers, including Fas-activated serine/threo-

nine phosphoprotein, TIA-1, XRN1, eIF4E, and

tristetraprolin [69, 70], and JUNQ, SFs, and IPODs also

localize the same set of chaperones at different times and

under different conditions [46, 51, 54]. The dynamic

association of chaperones with inclusions is an interesting

example of spatial organization regulating quality control

activity to suit the needs of the cell. During optimal non-

stress conditions sHsps are in the IPOD and Hsp104 is

diffuse in the cytoplasm. Under acute stress, Hsp104 rap-

idly enters SFs where is colocalizes with Sis1, sHsps, and

Hsp70 [71, 72]. These chaperones appear to mediate re-

folding of proteins which may transiently misfold during

acute stress, but which may still have the potential to return

to a functional state. Under prolonged stress, as refolding

becomes less of a priority and toxicity avoidance becomes

more important, Hsp104 redistributes to the IPOD where it

mediates protective amyloid formation to sequester mis-

folded substrates from the rest of the cytoplasm [50]. At the

same time, Hsp104 can also be observed in the JUNQ,

presumably to prevent proteins there from aggregating and

blocking proteasomal processing of misfolded proteins.

The re-distribution of Hsp104 in response to stress condi-

tions may explain its pleiotropic activities characterized

in vitro, while putting them in their in vivo context. Hsp

104 has been shown to both disaggregate amyloids and

disordered aggregates [73], and well as to promote amyloid

formation [74] and prion seeding [75, 76]. Since it is highly

unlikely that a single chaperone is continuously engaged in

pleiotropic and often mutually opposing activities, it is

possible that its different activities are regulated by

dynamic compartmentalization of the Hsp104 and its

cofactors in response to different conditions.

Mechanism of inclusion formation

How do misfolded proteins and quality control components

get from the cytoplasm to an inclusion? Several mecha-

nisms have been proposed, though the question is far from

settled. The classical model, at least in mammalian cells,

posits that misfolded proteins and stress foci-like micro-

aggregates are delivered to inclusions in a microtubule-

dependent manner [77, 78]. This line of reasoning is sup-

ported by data showing that disruption of microtubule

polymerization leads to cytoplasmic dispersal of multiple
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stress foci-like structures and prevents their accumulation

in a juxtanuclear location or in an inclusion [79]. Disrup-

tion of dynein motors has a similar effect [80]. An adaptor

protein, HDAC6, is thought to mediate the interaction

between microtubules and misfolded proteins, through its

ubiquitin-interacting domain, together with Ataxin-1,

Ataxin-3, PLIC-1, and p62 [75, 81].

Other potential models for delivery exist as well. The

dispersal of misfolded proteins as a result of microtubule

disruption could be an indirect effect—the structure of the

cytoplasm and intermediate filaments depend on the

microtubule and actin cytoskeleton. Disrupting actin or

tubulin could result in pleiotropic effects on cytoplasmic

architecture and may not necessarily indicate that mis-

folded proteins travel directly on microtubules. Stress

foci-like particles and other aggregate foci, for their part,

do not move in a unidirectional fashion, at least in data

acquired so far [51]. If delivery is not based on direct

transport on microtubules, what mechanisms could

account for the accumulation of misfolded proteins in

juxtanuclear inclusions like the JUNQ? Several options

exist. For example, it is not clear that foci are actually

transported and merged with an inclusion. Influx and

egress of misfolded proteins in stress foci and other foci

could be transient, and the inclusion could form diffuse

misfolded proteins as opposed to a hierarchical pathway

of diffuse protein to foci to inclusion, as is often thought.

The diffuse misfolded proteins may simply have a higher

affinity for the JUNQ, either because of specific chaper-

one receptors stationed therein, or because of a ‘‘sticky’’

cytoskeletal platform such as a high VIF concentration

[82]. Fluorescence loss in photobleaching (FLIP) and

PhotoConversion (PhoC) studies (utilizing these tech-

niques to alter the fluorescence state of a sub-population

of cytoplasmic proteins to then monitor their movement)

have shown that the cytoplasm is churned with relatively

rapid kinetics; hence a given misfolded protein ‘‘sees’’ the

inclusion many times per minute, and has, therefore, the

option of retention within it [83, 84].

Another possibility is that the cytoskeleton functions as

a ‘‘net’’ rather than a ‘‘railroad’’ to deliver foci and proteins

to the inclusion. In mammalian cells, for example, Inclu-

sion formation coincides with VIF collapse—it is,

therefore, possible that rather than dynein-based delivery

directly on microtubules, ‘‘sticky’’ VIF filaments collect

stress foci and misfolded proteins and transport them to the

inclusion by interacting both with tubulin and actin. Direct

time-resolved observation of foci dynamics in live cells

will be essential for determining the precise method of

delivery from cytoplasm to inclusion.

It is important to note that misfolded proteins or stress

foci are not the only particles that must be delivered to

inclusions. Recent studies provide novel observations of

lysosomal trafficking towards the inclusion as well. The

proposed mechanism is similar to the one described

above—rather than directed microtubule transport, the

study suggests that lack of transport around the inclusion

site leads to the accumulation of lysosomes in what the

report terms an ‘‘entrapment zone’’ [78].

Inclusions: function vs toxicity

Although inclusions, stress foci, stress granules, and other

dynamic droplets appear to occupy a liquid state in their

native functional constitution, under stressful or disease-

associated conditions they can ‘‘mature’’ into solid-state

aggregates. For example, mutations in genes coding for

RNA quality control proteins TAR DNA-binding protein

43 (TDP-43) and fused in sarcoma (FUS), and in the gene

chromosome 9 open reading frame 72 (C9orf72), cause

ALS pathology [85–89]. There are many ongoing inves-

tigations aimed at deciphering how these two RNA-

binding proteins and the dipeptide products of C9orf72

cause disease. So far, it appears that accumulation of

FUS, TDP43, and dipeptides in stress granules, results in

a disruption of RNA metabolism and possibly translation

[90–95]. Indeed, many ALS pathologies exhibit a TDP43

positive inclusion, even when the underlying mutation is

in SOD1, or in another protein [90, 96]. Since many of

the proteins comprising stress granules have glutamine-

rich or prion-like domains and since they associate in the

droplet through many multivalent interactions, the pre-

sence of a protein with high aggregation propensity may

facilitate a transition from a dynamic liquid phase struc-

ture to a more immobile, insoluble, ‘‘aggregate’’ like

structure.

As noted above, JUNQ inclusions exhibit a similar

tendency to transition from a dynamic droplet to a signif-

icantly less mobile inclusion containing aggregated protein.

In yeast, prolonged exposure to high levels of stress causes

the JUNQ to increase in size, become less mobile, and

accumulate Hsp104 (suggesting the presence of aggregated

species that are Hsp104 substrates) [46]. This phenomenon

has been studied at higher resolution in mammalian cells

[52, 53]. As the amount or aggregation propensity of

misfolded proteins increases in the JUNQ, its mobility

steadily declines. In conjunction with this, the degradative

capacity of the JUNQ declines as well, with JUNQ-local-

ized proteasomes becoming inactive. In these stages of

initial aggregation, Hsp70 appears to be the limiting

reagent, and over-expression of the stress-induced version

of Hsp70 restores both mobility and degradative function,

while also rescuing toxicity. A protective alternative is

furnished by the IPOD—when toxic aggregating species

(such as ALS-linked mutant SOD1) are rerouted from the

JUNQ to the IPOD, toxicity is rescued as well [53].
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From JUNQ to aggresome

We suggest that these changes in JUNQ properties brought

on by accumulation of large amounts of substrate or the

accumulation of aggregation-prone substrate corresponds

to changes in JUNQ function. When the JUNQ becomes

immobile, large, and more reminiscent of an ‘‘aggresome,’’

actin filaments redistribute around it [52]. It is possible that

this coincides with the recruitment of lysosomes to the

JUNQ, transforming its function from proteasomal degra-

dation to autophagic degradation, as a last resort.

The term aggresome was initially used to describe all

inclusions observed in mammalian cells, generated by

expressing disease-associated proteins such as polygluta-

mine huntingtin, mutant SOD1, CFTRDF508, synphillin,

PrP, and other pathologically linked proteins [77, 97–101].

According to the aggresome model, all of these proteins

formed juxtanuclear inclusions that interacted with the

MTOC, were surrounded by (VIF), and contained aggre-

gated forms of the misfolded protein that was being

expressed. During the last decade, however, it has been well

documented that many misfolded proteins which earlier

thought to be aggresome substrates form inclusions that do

not necessarily colocalize with the MTOC [52], nor always

exhibit a VIF cage [52]. Moreover, juxtanuclear inclusions

are far from uniformly aggregated, with recent studies

reporting a range of mobility properties, from extremely

dynamic, soluble, and mobile, to insolubly aggregated [17,

52, 53]. In light of this, what we suggest, is that this range of

observations in mammalian cells represent different inclu-

sion types (JUNQ-like and IPOD-like), as well as a time-

and stress- dependent maturation of certain dynamic JUNQs

to immobile inclusion. The term aggresome has been useful

so far as a general concept of a central location for col-

lecting aggregated proteins, but it will now have to be

refined as our understanding of dynamic droplets and dif-

ferent inclusion structures expands.

One important question that remains unanswered so far

is whether inclusions and other dynamic droplets are ad

hoc compartments that form in response to stress, or

whether these are constitutive functional units that become

more pronounced and, therefore, easier to detect upon

stress induction. Given standard imaging approaches, it is

often easy to conclude that a given cellular structure is

formed when the accumulation of a marker used to visu-

alize it in a distinct location. However, it is equally true

that the underlying structure may be present constitutively

below detection limits, until acute stress makes markers

more pronounced. Stress Granules, for example, are

hypothesized by some to exist constitutively, as translation

factories, until severe stress causes translation to stall and

for Stress Granule factors to accumulate to above the

detection limit [102].

Functional amyloids

From recent studies in the field it is clear that many

dynamic droplets are functional compartments rather than

‘‘aggregates,’’ as they are often called. What about actual

amyloid aggregates in the cell? Can they also have func-

tion, are they inert protective structures, or a harmful and

undesirable byproduct of the propensity of proteins to

aggregate? Turning to yeast which, much unlike human

neuronal cells, have a high tolerance for amyloidogenic

proteins, amyloid-containing IPODs appear to serve

simultaneously as a defense mechanism preventing the

accumulation of aggregated and misfolded proteins in the

cytoplasm, and as a functional compartment [46, 58, 59]. A

number of studies have observed a protective role for

amyloid IPODs in yeast and mammals [38, 46, 53]. It

seems that highly amyloidogenic proteins do decidedly less

damage to cellular homeostasis when they can be effi-

ciently stored in an IPOD inclusion. However, another

report highlighted a potentially important function for

IPODs, in the creation of amyloids for transition into a

yeast prion state [57, 59]. The inheritance of the yeast prion

state [PSI?] requires the aggregation of the translation

terminator Sup35, through its prion domain (PrD). The

prionogenesis of Sup35 requires a maturation process, from

diffuse cytosolic localization, to perivacuolar ribbons, to

compaction in an IPOD inclusion. Surprisingly, only cells

that managed to pack Sup35 PrD into the IPOD were able

to transmit [PSI?] prion state to progeny, whereas cells in

various intermediary states such as ribbons failed to do so.

Critically, Sup35 PrD fibrils that were packed into IPODs

were highly fragmented, whereas ring-localized PrD was

organized into long un-interrupted fibrils. This study sug-

gests that Sup35 PrD is actively converted into prionogenic

fibrils in the IPOD by Hsp104’s fragmentation activity.

This is particularly interesting in light of other data

showing that Hsp104 re-distributes to the IPOD only under

certain conditions (such as under heat stress of oxidative

stress [46, 51] helping to explain why these conditions are

favorable for de novo prion induction. A key question is

whether this dual functionality (sequestration of aggregates

and prion seeding) of the IPOD has been evolutionarily

conserved. Yeast are a relatively aggregation-tolerant

organisms, and have been suggested to exploit the multi-

tude of amyloidogenic prion-like proteins encoded in its

genome [103] as the basis for phenotypic switches, helping

sub-populations gain fitness advantages under diverse and

stressful conditions [104]. It is interesting to speculate that

in multicellular eukaryotes the IPOD serves only a pro-

tective role and that amyloid fragmentation for the sake of

prion induction is an intolerable risk for multicellular

organisms; hence the Hsp104 amyloid seed-generating

activity is not conserved from yeast to mammals [105].
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Aggregation in disease models

What then is the relationship between dynamic droplets/

inclusions observed in cultured cells or simple models like

yeast, and the cell physiology or pathology in animals, from

organismal models of disease to human pathology? So far

studies forging the connection have been few and have

relied mostly on fixed samples and immunohistochemistry.

Several studies have also examined fixed brain slices from

mice expressing disease-associated proteins and human

samples from individuals affected by neurodegenerative

diseases [106–108]. The main preliminary conclusion that

emerges from these reports is that affected brain and spinal

cord tissue contains inclusion structures that co-stain with

many of the markers that localize to inclusions in cell cul-

ture models, but the connection to functional dynamic

inclusions observed so far in tissue culture remains unclear.

Despite the fact that it is often difficult to draw con-

nections between tissue culture and phenomena observed

in human brains, studying disease-associated proteins in

simple cell models like cultured cells and yeast can offer

important insight into the cellular pathology caused by

expression or abundance of these proteins. Simple animal

models have also provided significant insight on disease

pathology. The nematode Caenorhabditis elegans offers

one of the best models for studying the interface of cell

biology and multi-cellular organismal regulation. Several

studies have observed inclusions, mostly formed by dis-

ease-associated proteins and other simple aggregation

prone models, in live animals [95, 109, 110]. These studies

would suggest that similar inclusions to JUNQ, IPOD, and

others observed in yeast in cultured cells exist in a multi-

cellular animal context, though the question of their

biological function has not been fully explored. For

example, mutant SOD1 aggregation and the resulting cel-

lular toxicity and organismal pathology are very well

recapitulated in many different model systems, from cul-

tured cells, to C. elegans, to mice and rats, showing

remarkably similar pathology in all these models [53, 94,

95, 111]. Moreover, the mutant SOD1 pathology observed

in simple models seems to closely mirror human pathology.

In particular, a number of studies have demonstrated that

the accumulation of mutant SOD1 (mutSOD1) in inclu-

sions that show similar characteristics across species, is

closely correlated to the onset of toxicity.

One of the most striking features of all neurodegenera-

tive diseases, including ALS, Parkinson’s, Huntington’s,

and Alzheimer’s is that the underlying toxic mechanism

lies dormant for several decades before triggering rela-

tively rapid degeneration, suggesting that pathology

manifests in some cells, some of the time, under certain

conditions. Hence, to understand the origins of disease

pathology and to validate potential therapeutics, the

molecular basis for late onset and cell specificity of disease

must be clearly defined. For HD, ALS, spinocerebellar

ataxia type 3 (SCA3), and many other neurodegenerative

diseases, the extreme cellular and temporal specificity of

toxicity onset is one of the least-understood facets of the

disease. Due to their tractability and rapid aging, simple

animal models that are designed to faithfully recapitulate

the cellular and organismal pathology of disease will be

extremely valuable in probing the mechanisms of

neurodegeneration.

For example, studies of heterologously expressed a-

synuclein have shed light on poorly understood facets of its

cell-biological function and potential mechanisms of

pathology, which have otherwise remained elusive [26,

112, 113]. Using yeast as a model, recent reports have

shown that a-synuclein, when over-expressed or carrying a

mutation, interferes with proper endo-membrane homeo-

stasis, possibly disrupting endocytic sorting [114]. It

remains for further study in neuronal sub-types to deter-

mine whether this triggers the dysfunction observed in

Parkinson’s pathology, and why it initially effects dopa-

minergic cells. It is important to note, however, that

modeling a-synuclein and other disease-associated proteins

in yeast offers an extremely effective platform for screen-

ing and designing therapeutic molecules to target specific

interactions between the disease protein and cellular

machinery that is deemed to be pathogenic [115].

Inclusions and aging

Whether inclusions and dynamic droplets are a response to

stress or a constitutive part of cellular architecture, they

have recently been attributed an additional unexpected

function. Besides maintaining quality control within the

cell, inclusions mediate quality control across multiple

generations of cells in a population. Several recent reports

have demonstrated that inclusions are partitioned asym-

metrically during mitosis and that this mechanism mediates

the replicative aging process, or replicative rejuvenation, of

dividing cells. The process of aging manifests a global

decline in a wide range of cellular functions. Although

discrete aging factors have been difficult to pinpoint, these

factors are encompassed by the accumulation of damage in

organelles (e.g. mitochondria, vacuoles, membranes) and

the cytoplasm (e.g. accumulation of misfolded and aggre-

gation-prone proteins). A number of important studies have

shown that bacteria, yeast, and mammalian cells, all use a

complex and multifaceted machinery to prevent the

inheritance of damaged materials, and in particular dam-

aged and aggregated proteins, by the new generation of

cells [116–120]. By spatially restricting damaged proteins

in inclusions and then asymmetrically partitioning
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inclusions during mitosis, cells are able to withhold mis-

folded and aggregated proteins from specific lineages

(Fig. 2). Since these aberrant protein conformers are key

determinants of aging, the ability to control their inheri-

tance is crucial for avoiding aging in specific cells [121,

122].

The key property enabling inclusions to be inherited

asymmetrically is their ability to spatially sequester

misfolded proteins and to interact with organelles and

cytoskeleton to ensure the polarity of their inheritance

after mitosis. In yeast, the JUNQ and IPOD inclusions

are uniformly retained in the mother cells during bud-

ding. The JUNQ remains attached to the nuclear

membrane, and the IPOD to the vacuolar membrane

[51]. During cytokinesis the organelles are divided in a

way that the regions tethered to the inclusions remain in

the mother cell. It is not yet clear how the segregation is

ensured at the level of organelles; however, it has been

shown that misfolded proteins that are not sequestered in

inclusions, such as the proteins in SFs, can be inherited

by daughter cells as well [51]. This provides an

intriguing possibility that stress foci are inherited as a

hedge mechanism: the misfolded proteins in JUNQ and

IPOD are terminal so there is no benefit to inheriting

them, whereas the proteins in stress foci still have the

potential for refolding. Although inheriting them can be

detrimental if stress persists (since they are already

misfolded), if the stress subsides the proteins in stress

nucleus

mother cell daughter cell

vacuole

IPOD JUNQ

vacuole
IPOD

vacuole
nucleus

nucleus

JUNQ

Stress Foci/Dynamic Droplets

actin

new mitochondria

old mitochondria

diffusion barriers

microtubules

SF

SF

SF

SF

SF

SF

SF

SF
SF

Fig. 2 Replicative rejuvenation

in yeast. Misfolded and

damaged proteins, aggregates,

and old or damaged organelles

are asymmetrically partitioned

during mitosis through various

mechanisms including

compartmentalization and

active transport on actin

filaments. Retention of JUNQ

and IPOD in mother cell is

mediated by their attachment to

the membranes of the nucleus

and the vacuole, respectively.

This process generates a

daughter cell free from damage

at the level of the proteome and

with new ‘‘more fit’’ organelles
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foci can easily be put back into circulation without the

need to synthesize them from scratch. This is similar to

mRNA stored in stress granules, which can be recycled

for rapid reinitiation of translation once there is no more

stress [123].

In mammalian cells as well, asymmetric inheritance of

inclusions has emerged as a key mediator of replicative

rejuvenation and aging. An important earlier study sug-

gested that some insoluble amyloid inclusions, similar to

the IPOD in yeast, were partitioned asymmetrically in

dividing mammalian-derived cell lines [124]. It was left

open to interpretation whether this is a deterministic phe-

nomenon (an insoluble amyloid inclusion is not easy to

divide in two; hence one cell will have to inherit it whether

in a polar division or just randomly), or whether there is an

aging polarity to mammalian mitoses similar to what is

observed in yeast.

A recent study has taken a second look at the phenom-

enon of inclusion asymmetry in mammalian cells. Looking

at different types of inclusions (JUNQ and IPOD) in

several different cell lines, this study showed that, sur-

prisingly, dynamic JUNQ compartments are also inherited

in an asymmetric fashion during mammalian cytokinesis

[52]. JUNQ and IPOD are usually inherited by the same

cell (in CHO, HEK, N2a, and HeLa cells), suggesting that

the divisions of these cells might actually be polar with

respect to damage (Fig. 3). To support this hypothesis, the

study observed a slight fitness advantage for cells that do

not inherit the JUNQ and are, therefore, free of its damaged

contents. Another study [125] in drosophila similarly

showed that intestinal stem cells partition damaged pro-

teins to differentiating progeny, confirming other

organism-level drosophila studies showing asymmetric

inheritance of damaged and ubiquitinated proteins by

specific cell types [124, 126].

Mechanism of replicative rejuvenation

What is the mechanism that enables asymmetric parti-

tioning? There are several pathways known to be involved

in mitotic partitioning. (1) The actin cytoskeleton can use

myosin motors to selectively import healthy mitochondria

and other organelles into daughter cells (this has been

shown in yeast). (2) Attachment to the centrosome via the

microtubule cytoskeleton can result in asymmetric inheri-

tance. (3) Sequestration in compartments (e.g. RNP

granules or inclusions) combined with an association with

organelles or cytoskeleton can also be used to partition

materials during mitosis; and finally, (4) diffusion barriers

in the endomembrane system can ensure asymmetry in

polar divisions [51, 117–119, 127].

In the case of misfolded and damaged proteins, evidence

points to a diverse set of mechanisms. Several studies have

shown a clear dependence of asymmetric inheritance of

misfolded proteins in yeast on an intact actin cytoskeleton.

When actin polymerization or anchoring at the bud is

impaired, misinheritance and premature aging ensue [65,

128–130]. It is not yet completely clear whether the role of

actin is primarily in the maintenance of cytoplasmic

organization, enabling proper sequestration of misfolded

proteins in inclusions, or whether it has a more direct role

in unidirectional (retrograde) transport of misfolded pro-

teins out of the bud and back into the mother cell [130].

Although it has been clearly shown that stress foci con-

taining misfolded proteins can easily pass into the bud and

be inherited by daughter and even granddaughter cells,

retrograde transport remains a possibility for their return

into the mother cell. On the other hand, stress foci do

appear to colocalize with actin cables, at least in cer-

tain situations, and do not appear to move very much in the

cytoplasm, certainly not diffusively enough to rule out a

level of regulation with respect to which of them enter the

bud and which do not [65].

nucleus

cell division

vimentin

JUNQ

IPOD

IPOD

JUNQ

damaged/misfolded proteins

actin

new mitochondria

 old mitochondria

microtubules

retention of protein aggregates

?

?

?

Fig. 3 Replicative rejuvenation in mammalian cells. Inclusions are

asymmetrically inherited in mammalian cells during division.

Daughter cells lacking JUNQ and IPOD may have survival advantage

compared to daughter cell that retains the inclusions. Question marks

imply mechanisms for asymmetry that are not yet clear
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Once misfolded proteins are sequestered in inclusions, a

non-actin-based mechanism ensures their retention. Yeast

mother cells retain JUNQ and IPOD inclusions by attach-

ing them to membranes [51]. In future it will be important

to determine whether this mechanism of attachment inter-

sects with endomembrane diffusion barriers.

In mammalian cells, the asymmetric mitotic partitioning

of JUNQ inclusions depends on the interaction of the

inclusion with the VIF, the microtubule cytoskeleton, and

the microtubule organizing center (MTOC) [52]. JUNQs

are associated with VIF and physically linked to the

MTOC. When the MTOC is displaced towards the edge of

the cell via the expression of Nesprin 4, a protein mediating

cell polarity, the JUNQ moves with the MTOC away from

the nucleus. The JUNQ and associated VIF stay intact

during mitosis (despite being quite dynamic and mobile);

hence the interesting model that emerges is one in which

the JUNQ is tethered by microtubules to one of the cen-

trosomes—perhaps the same one in each division. Another

report in drosophila suggested as well that asymmetric

segregation of ubiquitinated proteins is centrosome-driven

[126]. It is important to mention that, unlike mammalian

and Drosophila cells, yeast shows no association between

inclusions (JUNQ or IPOD) and the spindle pole body

(SBP), or the yeast functional homologue of the MTOC.

Surprisingly, VIF itself was shown to be inherited

asymmetrically in dividing mammalian cell lines; hence it

could play the role of establishing polarity in a variety of

mitoses [52]. However, the IPOD does not always co-

segregate with the JUNQ and has no perceptible associa-

tion with VIF, suggesting that, although there is still a

strong bias towards polarity, IPODs containing insoluble

proteins (e.g. polyglutamine aggregates) are sometimes

misinherited during division.

Frontiers

While much work has been done to further our under-

standing of the effect of disease-associated protein

aggregation and inclusion formation on cell viability and

animal physiology, we have almost no models for exam-

ining their molecular pathology in functional neurons in

their physiological context (in a live animal model of

disease). Moreover, we do not yet have a clear under-

standing of what is special about certain neurons, making

them extraordinarily susceptible to the toxicity of accu-

mulating damaged and misfolded proteins. Are neurons

metabolically hyperactive and hence generate more oxi-

datively damaged proteins than other cells? Do highly

functional neurons over-burden their cellular trafficking

machinery making it susceptible to dysfunction? Do neu-

rons accumulate more protein damage because they are the

longest-living post-mitotic cells in the organism and,

therefore, cannot partition damage to other lineages during

division? Are neurons slow to up-regulate important

chaperones? Do certain neurons require precisely timed

mRNA processing and delivery to the synapse, making

RNA metabolism their ‘‘Achilles’ heel’’? All of these

models for neuronal specificity of many neurodegenerative

diseases are compelling, but unfortunately, save for a few

pilot studies, so far they are preliminary [94, 95, 131–133].

In the future, it will be essential to apply reductionist cell

biological approaches to functional neural circuits in live

animals, thanks to a proliferation of optogenetic techniques

and molecular probes enabling real-time reporting on key

cellular functions [134–136]. This will help determine what

makes neuronal function cell-biologically unique in their

sensitivity to different types of stress, at the single-neuron

level and in individual circuits. Discovering more ‘‘bot-

tleneck’’ factors that predispose neurons to proteinopathy

would have a profound impact on our understanding of the

disease and on translational initiatives.

Concluding remarks

The past decade has seen a conceptual transformation in

our understanding of the role of compartmentalization and

spatial architecture in the basic functions of the cytoplasm,

especially in protein quality control and homeostasis. The

boundaries between a single molecule diffusely localized

in the cytoplasm, a molecular complex, membrane-less

dynamic droplets, and larger immobile inclusion structures,

are much more fluid than we previously thought. New tools

in both concept and methodology are urgently needed to

forge ahead in our understanding of how cells regulate

folding and stress response over time, in different cell-type

contexts, during aging, and at different conditions.

Conceptually, it is important to advance our cell bio-

logical characterization of granular compartments beyond

diffuse versus aggregated. This also requires methodolog-

ical advances, especially in terms of the incorporation of

imaging approaches with higher resolution and over time.

This is especially critical for understanding the onset

and progression of diseases linked to protein misfolding,

which are kept at bay for years by proteostasis machinery,

onset after years of exposure to the underlying etiological

cause, and are exacerbated by stress and aging.
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