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SUMMARY

Exposing cells to folding stress causes a subset of
their proteins to misfold and accumulate in inclusion
bodies (IBs). IB formation and clearance are both
active processes, but little is known about their
mechanism. To shed light on this issue, we per-
formed a screen with over 4,000 fluorescently tagged
yeast proteins for co-localization with a model mis-
folded protein that marks IBs during folding stress.
We identified 13 proteins that co-localize to IBs.
Remarkably, one of these IB proteins, the uncharac-
terized and conserved protein Iml2, exhibited strong
physical interactions with lipid droplet (LD) proteins.
Indeed, we here show that IBs and LDs are spatially
and functionally linked. We further demonstrate a
mechanism for IB clearance via a sterol-based
metabolite emanating from LDs. Our findings there-
fore uncover a function for Iml2 and LDs in regulating
a critical stage of cellular proteostasis.

INTRODUCTION

During stress, misfolded proteins can overload the capacities of

the quality control machinery, forming aggregates and later

accumulating in inclusion bodies (IBs). It has recently become

clear that IB formation from aggregates (recently termed ‘‘stress

foci’’ or ‘‘Q bodies’’) (Escusa-Toret et al., 2013; Spokoini et al.,

2012) is an active cellular process (Kaganovich et al., 2008;

Kopito, 2000). Moreover, the inability to clear aggregates from

the cytosol, either by degradation or sequestration in IBs is toxic

and underlies a number of human diseases (Amen and Kagano-

vich, 2015; Cohen et al., 2006). Recently, it has been demon-

strated, in both yeast and mammals, that each IB has unique

characteristics. (Kaganovich et al., 2008; Ogrodnik et al., 2014;

Weisberg et al., 2012).

Although IBs have been studied extensively, we do not yet

know the entire repertoire of IB resident proteins. Moreover,

we have little insight into how IBs are formed during stress or
cleared upon termination of stress. To address such questions,

we visualized over 4,000 fluorescently tagged yeast proteins

(Huh et al., 2003) to search for IB residents in a systematic and

unbiased fashion and found 13 IB proteins, six of which are

important for the efficient and rapid clearance of IBs after stress.

Focusing on a conserved yet unstudied protein that was

essential for efficient inclusion clearance, Iml2, we demonstrate

that it interacts with lipid droplet (LD) proteins. LDs are mainly

known to function as storage compartments for non-polar

lipids although some studies suggest their involvement in the

degradation of specific proteins (Ohsaki et al., 2006). Here, we

demonstrate a role for LDs in physically binding to, and clearing

of, cytosolic IBs. We show that clearance is dependent on Iml2,

the non-polar lipid steryl ester and a soluble sterol metabolite

and suggest that this mechanism is conserved to mammals.

RESULTS AND DISCUSSION

To assemble a comprehensive list of IB resident proteins, we

screened the yeast GFP library (Huh et al., 2003), a collection

of �4,000 strains in which GFP was integrated carboxy-termi-

nally into the genomic locus of over 60% of yeast genes. To

identify IBs with certainty, we co-localized each of the proteins

with the IB marker, misfolded VHL tagged with mCherry

(cherry-VHL) (Kaganovich et al., 2008; McClellan et al., 2005).

To create a genetic background that causes a consistent mis-

folding stress, we used a hypomorphic allele of the 20S protea-

some, pup2-DAmP, in which large IBs are formed (Figure S1A).

We introduced cherry-VHL and pup2-DAmP into the GFP

library (Cohen and Schuldiner, 2011; Tong and Boone, 2006)

and live-imaged all of the strains during logarithmic growth in

galactose (to induce VHL expression) using a high content

screening setup (Breker et al., 2013). Visual inspection of all

strains yielded 13 GFP tagged proteins that co-localize with

cherry-VHL: quality control components, translation and post-

translational factors, and poorly characterized proteins (Fig-

ure 1A). Five of the quality control components were previously

shown to localize with aggregates or IBs (Hill et al., 2014; Kaga-

novich et al., 2008; Malinovska et al., 2012; Specht et al., 2011),

thus validating the screening platform. We verified the findings

by visualizing the original GFP tagged strains during stress
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Figure 1. A Systematic Co-localization

Screen Uncovers IB Residents

(A) Images of 13 GFP-tagged proteins that co-

localize with GALp-Cherry-VHL in a pup2-DAmP

background. The inclusion body (IB) residents

can be divided into quality control components,

translation and post-translation factors, and pro-

teins whose function is poorly characterized.

(B) Schematic representation of the IB clearance

assay.

(C) Representative images of time course to follow

inclusion clearance in control (WT) strains and

deletion strains (Dhsp104 and Diml2) that affect

the process.

(D) Graph demonstrating that most strains had

identical number of inclusions formed following

stress. Since WT cells cleared IBs efficiently by

5 hr we chose this time point to represent in

following figures.

(E) Bar graph of clearance rates in deletion strains

of all identified IB residents 5 hr after exposure to

stress conditions. Because SIS1 is an essential

gene, a hypomorphic allele (DAmP) was used in

this assay. SEwas calculated from three biological

repeats, number of cells counted per strain per

repeat: n = ±450 (p value < 0.05). Scale bar, 5 mm.

See also Figure S1.
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conditions (37�C for 90 min with proteasome inhibition) confirm-

ing IB residence (Figure S1B).

The presence of a protein in IBs could be due to two reasons—

it could either function within the inclusion (machinery) or could

be deposited there due to itsmisfolded conformation (substrate).

As we are interested in machinery proteins, we wished to

sieve out obvious substrates from our hit list. By screening

our hits for proteins with substrate properties such as high

turnover rate (Gardner et al., 2005), no affect on viability under

stress, and localization changes that are dependent on ubiquiti-

nation, we found that the majority of our hits lack substrate

properties. We could identify Alt2-GFP as a possible substrate

(Figures S1C–S1F), which we find notable since there are few

endogenous proteins characterized as misfolded quality control

substrates.
2 Developmental Cell 33, 1–8, June 8, 2015 ª2015 Elsevier Inc.
To identify proteins that have a role in

the clearance process, we followed the

recovery of IBs post stress (37�C and

proteasome inhibition) using time-lapse

microscopy on deletions of the genes

we found (excluding Dalt2) (Figure 1B).

At the first time point, both control (wild-

type [WT]) and deletions had similar

numbers of cells with IBs (except Dhsp42

that did not form IBs under these con-

ditions) (Figure 1D), hence, most of the

IB residents do not seem to affect the

formation process. In WT cells, 5 hr

following termination of stress, the major-

ity of cells had cleared all cytosolic inclu-

sions (Figure 1D). As expected, this was

not the case for the deletion of the disag-
gregase hsp104 in which IBs sustained 5 hr post stress (Spokoini

et al., 2012), demonstrating that our assay gives a good indica-

tion of a protein’s role in IB clearance (Figure 1C). When quanti-

fying the relative percent of cells still harboring cytosolic

inclusions five hours post stress, we found that seven of the de-

letions had a significant effect on clearance (Figure 1E). Three of

the strains identified were chaperones (Hsp104, Hsp26, and

Sis1) with prior evidence of their involvement in protein folding

processes (Haslbeck et al., 2005; Malinovska et al., 2012; Parsell

et al., 1994). However, the other four deletions were of genes

with no prior connection to chaperone activity, IBs, or quality

control.

Of particular interest was the uncharacterized protein Iml2.

This protein is highly conserved from yeast to mammals (the

human homolog is TetraTricopeptide Repeat Domain 39B/C,
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TTC39B/C), and mutations in it are linked to several human dis-

eases (Kuang et al., 1998; Teslovich et al., 2010). To validate Iml2

as a bona fide IB resident, we modeled it and found that it most

likely is a soluble protein as expected from an IB resident (Fig-

ure S2A) (Karplus, 2009; Pettersen et al., 2004). Indeed, tagging

with GFP at either termini demonstrated co-localization with IBs

(Figure S2B). To ensure that the role of Iml2 is not specific to VHL,

we measured the clearance of Alt2, the newly characterized

endogenous quality control substrate, as well. Indeed, deletion

of Iml2 resulted in a severe IB clearance defect for Alt2, confirm-

ing its affect on clearance is general (Figure S2C).

To understand the role of Iml2 in clearance, we performed a

physical interaction screen by using a systematic protein

complementation assay (Tarassov et al., 2008). We found that

Iml2 interacts with two proteins, Pet10 and Pdr16 (Figure 2A)

preferentially during stress when it is found solely in IBs. Interest-

ingly, both identified interacting proteins are residents of lipid

droplets (LDs) in line with previous high-throughput screens

(Pu et al., 2011) (Figure 2A). To verify this interaction, we per-

formed a pull-down of Iml2 and could detect an interaction

with Pet10 specifically under stress conditions when Iml2 be-

comes an IB resident. As a control, the close homolog of Iml2,

Ykr018c, did not bind to Pet10, assuring the specificity of

Iml2’s interaction (Figure 2B).

Since Iml2 binds LD proteins only under conditions where it is

localized exclusively to IBs, this necessitates that LDs and IBs lie

in close proximity during misfolding stress. Indeed, cells ex-

pressing Hsp104-GFP as an IB marker and Erg6-RFP as a LD

marker demonstrate that under stress conditions many in-

stances of proximity between IBs and LDs occur (Figure 2C)

and could also be visualized by electron microscopy (Fig-

ure S2D). Time-lapse microscopy under stress conditions

demonstrated IBs and LDs moving together in a correlated

fashion (Figure 2D), indicative of a physical tethering between

the compartments. The co-localization between the two com-

partments became even more apparent when visualizing a

Dfld1 strain, which causes the LDs to cluster (Szymanski et al.,

2007) (Figure 2E).

To further define the nature of this proximity, we constructed a

strain carrying a split Venus reporter for the contact surface be-

tween LDs and IBs (Sung and Huh, 2007). Specifically, one-half

of the fluorescent protein Venus was fused to the abundant IB

marker, Hsp104, and the other to the LD marker, Faa4 (Huh

et al., 2003). When co-expressed in the same cell under stress

conditions we could identify a strong Venus signal. This signal

was specific as the abundant cytosolic (non-IB) protein, Sem1,

did not display a Venus signal (Figure S2E). Co-localization of

the Venus foci with the LD marker, Erg6-cherry, shows that the

contact between LDs and IBs occurs only with a subpopulation

of LDs (Figure 2F, upper panel). Remarkably, the Venus foci is

fully co-localized with Pdr16, an Iml2 interactor (Figure 2A),

which is only expressed in one LD per cell and probably defines

a certain functional subset of LDs (Ren et al., 2014) (Figure 2F,

lower panel). Moreover, while Diml2 and Dpet10 failed to impact

proximity, loss of PDR16 abolished the Venus signal (Figure 2G)

demonstrating that the proximity is genetically regulated. How-

ever, the nature of the tethering force remains elusive and may

either require tethering proteins or be indirect through the inter-

actions of each structure with the ER. Nonetheless, this discov-
ery prompted us to further explore the biological significance of

the specific and regulated contact formed between IBs and LDs

under stress conditions.

To test whether the LDs themselves have a role in IB clear-

ance, we used a quadruple deletion strain (Ddga1, Dlro1,

Dare1, Dare2) that completely lacks LDs (DLD) (Sandager

et al., 2002). Indeed, this strain has an IB clearance defect similar

in magnitude to Diml2 (Figures 3A and 3B). We first verified that

the IB clearance defect is not a by-product of reduced auto-

phagy (Koenig et al., 2015; Li et al., 2015; Pfisterer et al., 2014;

Spang et al., 2014) by deleting core autophagy genes (Datg1,

Datg2, Datg3, Datg8) (data not shown). In an attempt to uncover

the mechanism of the effect we screened a collection of mutants

in all LD proteins (Table S1). Eight deletions were found to phe-

nocopy the defect of the DLD strain (Figure 3C), three of which

are proteins that interact with Iml2: Pdr16, Erg6, and Pet10, sug-

gesting that the interaction with these three proteins is somehow

required for LD-mediated IB clearance.

Because mutants in both ERG6 and PDR16 had defects in

clearance, and since both are known to affect sterol metabolism

(McCammon et al., 1984; van den Hazel et al., 1999), we tested

whether the lipid composition of LDs affects the clearance of IBs.

In LDs lipids are stored either as the sterol derivative steryl ester

(STE) or the non-polar lipid triacylglycerol (TAG). Measuring IB

clearance in two double deletion strains for the enzymes that

are responsible for the biosynthesis of each type of storage lipid;

Ddga1, Dlro1 (that completely lacks TAGs, DTAG) and Dare1,

Dare2 (that completely lacks STE, DSTE) (Sandager et al.,

2002) we saw that the DTAG strain cleared IBs as the control

strain. However, the DSTE strain had a very severe defect in

clearing IBs, (Figures 3D and S3A). Growth rates of these mu-

tants were comparable (Figure S3B), as was the number and

size of LDs (Figures S3C and S3D) suggesting that the difference

in IB clearance capacity is not an indirect effect. The effect of

STE deletion on IB clearance appears to be specific for two addi-

tional reasons. First, we could reduce the levels of STE by an

alternate mechanism, overexpression of the STE hydrolase

Yeh1 (Köffel et al., 2005), causing a similar loss of IB clearance

(Figure 3D). Second, we tested dozens of mutants in all other

lipid biosynthesis pathways and found no effects on IB clearance

(Table S2) demonstrating that the phenotype of STE loss is not a

general result of changes in lipid homeostasis in the cell.

Since STE are hydrophobic molecules, we hypothesized

that they could act locally to solubilize hydrophobic interactions

between aggregates inside IBs, acting as a detergent or a

‘‘chemical chaperone.’’ An example for such a chemical chap-

erone is tauroursodeoxycholic acid (TUDCA), a sterol-based

molecule with hydroxyl and Taurine groups, that alleviates

folding stress in mammalian cell lines (de Almeida et al.,

2007). According to this model, LDs may act as portable

reservoirs for sterol-based solvents, delivering them to IBs

when disaggregation, refolding, and clearance are required.

This would also explain the requirement for physical proximity

between the two compartments as transfer of a detergent like

molecule must be local and regulated.

To determine whether such a soluble sterol metabolite,

indeed, exists in yeast, we performed a non-targeted lipid

profiling approach to assess differences in lipid species between

a WT strain grown under stress or non-stress conditions.
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Figure 2. Inclusion Bodies and Lipid Droplets Are Juxtaposed in Cells

(A) Large-scale protein complementation assay performed for Iml2 at 37�C uncovered physical interaction with Pet10 and Pdr16. Previous reports support this

interaction.

(B) Co-immunoprecipitation of Iml2 shows that Pet10 interacts with Iml2 but not its homolog Ykr018c, specifically under stress conditions.

(C) A strain expressing an IB marker (Hsp104-GFP) and a LD marker (Erg6-RFP) exposed to standard conditions and stress conditions (37�C for 90 min with

MG132) reveals proximity between IBs and LDs during stress.

(D) Time-lapse series of cells expressing Cherry-VHL and Erg6-RFP under stress conditions shows that the proximity between IBs and LDs is stable over time

(arrowhead).

(E) WT strain expressing cherry-VHL stained with BODIPY for LDs and exposed to heat stress and imaged using structured illumination microscopy (SIM) shows

that IBs and LDs are found in close proximity. Dfld1, which has a phenotype of clustered LDs, shows clumping of IBs together with the LDs. Numbers indicate

percentage of IBs found in proximity to LDs in each strain.

(F) Strains harboring two halves of split Venus on Hsp104 (an IB resident) and Faa4 (a LD resident) show a focal signal that co-localizes with a subpopulation of

Erg6-Cherry positive LDs. The Venus signal overlaps completely with a specific subset of LDs that are marked by Pdr16-Cherry.

(G) Quantification of Venus foci on populations in different deletion backgrounds shows that Dpdr16 has a significant reduction in proximity.

See also Figure S2.
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Figure 3. Lipid Droplets Are Crucial for the

Efficient Clearance of Inclusion Bodies

(A) Images of a clearance assay in control (WT) and

a quadruple deletion strain that lacks LDs (DLD),

demonstrating that the DLD strain has a clearance

defect.

(B) Quantification of the inclusion clearance defect

in the DLD strain.

(C) Screening deletion strains of all LD proteins

reveals that eight deletions phenocopy the inclu-

sion clearance defect of the DLD strain. Red bars

indicate Iml2 interactors shown in Figure 2A.

(D) Strains lacking steryl esters (STE) either by

deletion of the biosynthesis enzymes (DSTE) or by

overexpression of sterol-ester hydrolyzing enzyme

(YEH1 OE) cause a defect in IB clearance (p value <

0.05). Deletion of the triacylglycerol biosynthesis

enzymes (DTAG) had minimal effect on inclusion

clearance. SE was calculated from three biological

repeats (p value < 0.05). Scale bar, 5 mm.

See also Figure S3 and Tables S1 and S2.
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We extracted total lipids and analyzed them by gas-chromatog-

raphy mass spectrometry and found a near-identical lipid profile

between conditions spanning hundreds of peaks. Only two,

small, yet highly reproducible (three biologically independent

experiments), differential peaks (at 588 and 604 s) appeared

only under IB forming conditions (Figure 4A). These peaks could

not be detected under identical conditions in the DSTE strain

(Figure 4A), suggesting that STEs are needed for the biosyn-

thesis of these molecules. Since these peaks were readily

detectable on the background of Diml2, Dpet10, and Dpdr16 it

seems that these proteins do not affect the biosynthesis of

these compounds (Figure 4B). Unfortunately, using mass spec-

trometry we could not identify the exact nature of these peaks,

however, both have shared spectra of a sterol backbone with a

hydroxyl and carbonyl groups (Figures 4A, left panel, and S3E),

which could make them soluble enough to act as chemical

chaperones.

We therefore tested if addition of a similar hydroxy-sterol

could rescue the DSTE clearance phenotype. Indeed, 25-hy-

droxycholesterol could rescue the clearance defect of the

DSTE strain (Figure 4C), in contrast to other studied chemical

chaperones (proline [Chattopadhyay et al., 2004] and Tween-

20 [Kreilgaard et al., 1998]) that did not have any effect on the

clearance process in theWTormutants (Figure 4D). Remarkably,

the addition of 25-hydroxycholesterol to the Diml2 strain did not

improve clearance (Figure 4C), implying that Iml2 is necessary

to enable access of the soluble sterol derivative to the IB.
Developmental Cell
Our work therefore suggests that a

soluble sterol derivative, formed by STE

and emanating from LDs, is important for

efficient clearance of IBs and requires

Iml2 to perform its role (Figure 4E). Since

Iml2 is conserved, this process may very

well occur also in mammals as we could

show that in cell lines IBs and LDs are

also found proximally (Figure S4A), are

tethered (Figure S4B), and their proximity
can be modulated by reducing the level of STEs using ACAT

inhibitors (Figures S4C and S4D).

Previous reports provide additional examples of a close prox-

imity between LDs and terminally misfolded protein compart-

ments in mammals. For example, aggregates of Parkinson

and Alzheimer disease-related proteins (a-synuclein and amy-

loid b-peptide), were shown to localize to LDs in neuronal cell

culture (Cole et al., 2002) and patients (Gómez-Ramos and

Asunción Morán, 2007). Additionally, the ER-associated degra-

dation (ERAD) substrates, ApoB and HMG-CoA reductase,

both accumulate on the surface of LDs following proteasome

inhibition (Hartman et al., 2010; Ohsaki et al., 2006). Each of

these examples focused on the unique properties of the sub-

strate proteins as an explanation for their presence on LDs.

Our observations were made by looking at a model substrate

(VHL), which is cytosolic, has no transmembrane domains,

no large hydrophobic domains or amyloidogenic properties.

Together, our data argue for a general and conserved role of

LDs in proteostasis.

In the past years, it is becoming clear that LDs are more then

an energy storage depot and serve additional cellular functions

(Walther and Farese, 2012; Welte, 2007). Here, we expand the

role of LDs as a compartment that comes in contact with IBs

and is actively involved in their clearance from the cytosol. The

role of LDs in inclusion clearance may have medical implications

for inclusion-related disorders, including some neurodegenera-

tive conditions, which potentially could be targets for therapy.
33, 1–8, June 8, 2015 ª2015 Elsevier Inc. 5



Figure 4. A Sterol Metabolite Is Involved in

Inclusion Body Clearance

(A) Lipid profile of sterols extracted from either WT

or DSTE strains grown at 30�C or exposed to

stress conditions (37�C with proteasome inhibi-

tion) and subjected to GC-MS. Differential peaks

are marked by arrows. The unidentified molecule

has some shared mass spectra with Cholest-5-

ene-16,22-dione, 3á,26-dihydroxy-, 3-acetate,

(20S, 25R) See also Figure S3E.

(B) GC-MS lipid profile of mutant strains grown

under stress conditions show a comparable profile

to WT, suggesting that thesemutants do not affect

the synthesis of the sterol derivative.

(C) The presence of 25-hydroxycholesterol,

soluble sterol, rescues the IB clearance defect of

DSTE but not of Diml2.

(D) Clearance assays in the presence of the known

chemical chaperones Proline and Tween-20

demonstrate no effect on IB clearance in either

DSTE or Diml2 strains.

(E) Schematic working model: IBs and LDs are

in close proximity as observed by the physical

interaction between Iml2 and Pet10. STE are

precursors for biosynthesizing a soluble sterol

derivative that is important for the clearance

process and requires Iml2 for its function.
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EXPERIMENTAL PROCEDURES

Yeast Strains and Libraries

All yeast transformation and library manipulation were preformed by standard

protocols (see Supplemental Experimental Procedures for details).

Inclusion Body Clearance Assay

Deletion strains containing plasmids with GFP-VHL under galactose driving

promoter were grown over night in 2% raffinose medium in a 96-plate

(NUNC) and back-diluted 1:10 into 2% galactose media. Cells were incu-

bated at 30�C for 3 hr and then exposed to inclusion forming conditions:

MG132 (Calbiochem) was added to a final concentration of 80 mM, and cells

were exposed to 37�C for 90 min in a PCR block. Fifty microliters from each

strain were moved onto glass bottom 384-plate (Matrical Bioscience)

covered with Concanavalin A (Sigma-Aldrich), washed twice with DDW fol-

lowed by addition of 2% glucose media to shut off GFP-VHL induction.

Time-lapse microscopy began immediately, acquiring images every hour

at 22�C.
Analysis for inclusion clearance was done as follows: all images were

viewed with the exact same contrast adjustments using ScanR analysis
6 Developmental Cell 33, 1–8, June 8, 2015 ª2015 Elsevier Inc.
software (Olympus). The inclusion clearance

score is the ratio between the number of cells

with inclusion bodies at the 5-hr time point

divided by the total number of GFP expressing

cells at zero time point, which was counted by

the ScanR software. To reduce the noise of

this assay, the score for a given strain is always

compared the value of the WT strain, which is

assayed at that specific experiment. Data pre-

sented as fold change compared to the WT.

For each strain, repetitions were conducted

from three independent transformants.

Protein Complementation Assay Screen

using the DHFR Library

Two Iml2 strains tagged with either half of the

DHFR enzyme were picked from either the MATa
or MATa DHFR libraries, and interaction analysis was performed as previously

described (Tarassov et al., 2008) at 30�C and 37�C for 5 days. As a control for

the specificity of the assay for Iml2, other inclusion residents found in our

screen Mrn1 and Elp3, were screened in the same manner to ensure identifi-

cation of specific Iml2 interactions (data not shown).

Lipid Analysis by Non-targeted Gas Chromatography-Mass

Spectrometry

Lipids were extracted as previously described in the Bligh-dyer pro-

tocol (Bligh and Dyer, 1959). For additional details see Supplemental

Information.

Structured Illumination Microscopy

Cells were seeded on concanavalin A-coated 35-mm plates (Ibidi). Prior to im-

aging, the point-spread function was visualized with 100 nm fluorescence

beads. Images were acquired using Nikon nSIM microscope equipped with

a 1003 Apochromat TIRF oil objective (NA 1.49) in 3D mode. The raw data

were examined for the grid pattern. Images were reconstructed with NIS-

Elements software.
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